A Novel Radiation Dosimetry Based on Optically Stimulated Luminescence

Author(s):  
Yanping Liu ◽  
Zhaoyang Chen ◽  
Yanwei Fan ◽  
Weizhen Ba ◽  
Shilie Pan

A new generation of Alkaline earth sulfides (MgS, CaS, and BaS) doped with rare-earth ions have been identified by the University of Montpellier as the very high sensitivity of these phosphors, the short time constant of the luminescence and the perfectly separated spectra enable many applications in real time and online dosimetry. The online detecting technology of optically stimulated luminescent (OSL) radiation dosimeter main make use of the OSL characteristics of doping the alkaline-earth metal sulphides, makes the material into the thin films for storing energy from Ionizing radiation, the excitation light through optical fibers reached the where under radiation-field, with a sensitive detection device to read out the radiation dose from storing the OSL material, obtains a novel technology of radiation dose measurement. In the previous works, the dosimeter benefits from a printed circuit board mount. Both the sensor and the electronics are exposed to radiation, the problem of the radiation induced damage is supposedly being addressed. In both cases, the use of optical fibers can provide an elegant solution. Optical fibers offer a unique capability for remote monitoring of radiation in difficult-to-access and hazardous locations. Optical fiber can be located in radiation hazardous areas and optically interrogated from a safe distance. Hence, optical fiber dosemeters are immune to electrical and radio-frequency interference that can seriously degrade the performance of remote electronic dosimeters. In this paper, a novel remote optical fiber radiation dosimeter is described. The optical fiber dosimeter takes advantage of the charge trapping materials CaS:Ce, Sm and SrS:Eu, Sm that exhibit optically stimulated luminescence (OSL). The range of the dosimeter is from 0.01 to 1000Gy. The optically stimulated luminescent (OSL) radiation dosimeter technically surveys a wide dynamic measurement range and a high sensitivity. The equipment is relatively simple and small in size, and has low power consumption. This device is suitable for measuring the space radiation dose; it also can be used in high radiation dose condition and other dangerous radiation occasions.

Sensors ◽  
2020 ◽  
Vol 20 (7) ◽  
pp. 2046 ◽  
Author(s):  
Stephanie Hui Kit Yap ◽  
Kok Ken Chan ◽  
Swee Chuan Tjin ◽  
Ken-Tye Yong

Recently, carbon allotropes have received tremendous research interest and paved a new avenue for optical fiber sensing technology. Carbon allotropes exhibit unique sensing properties such as large surface to volume ratios, biocompatibility, and they can serve as molecule enrichers. Meanwhile, optical fibers possess a high degree of surface modification versatility that enables the incorporation of carbon allotropes as the functional coating for a wide range of detection tasks. Moreover, the combination of carbon allotropes and optical fibers also yields high sensitivity and specificity to monitor target molecules in the vicinity of the nanocoating surface. In this review, the development of carbon allotropes-based optical fiber sensors is studied. The first section provides an overview of four different types of carbon allotropes, including carbon nanotubes, carbon dots, graphene, and nanodiamonds. The second section discusses the synthesis approaches used to prepare these carbon allotropes, followed by some deposition techniques to functionalize the surface of the optical fiber, and the associated sensing mechanisms. Numerous applications that have benefitted from carbon allotrope-based optical fiber sensors such as temperature, strain, volatile organic compounds and biosensing applications are reviewed and summarized. Finally, a concluding section highlighting the technological deficiencies, challenges, and suggestions to overcome them is presented.


1998 ◽  
Vol 531 ◽  
Author(s):  
Adam Powell ◽  
James Warren ◽  
Christopher Bailey

AbstractSolder is often used as an adhesive to attach optical fibers to a circuit board. In this proceeding we will discuss efforts to model the motion of an optical fiber during the wetting and solidification of the adhesive solder droplet. The extent of motion is determined by several competing forces, during three “stages” of solder joint formation. First, capillary forces of the liquid phase control the fiber position. Second, during solidification, the presence of the liquid-solid-vapor triple line as well as a reduced liquid solder volume leads to a change in the net capillary force on the optical fiber. Finally, the solidification front itself impinges on the fiber. Publicly-available finite element models are used to calculate the time-dependent position of the solidification front and shape of the free surface.


Sensors ◽  
2020 ◽  
Vol 20 (3) ◽  
pp. 908 ◽  
Author(s):  
Regina Magalhães ◽  
Luis Costa ◽  
Sonia Martin-Lopez ◽  
Miguel Gonzalez-Herraez ◽  
Alejandro F. Braña ◽  
...  

Until recently, the amount of solar irradiance reaching the Earth surface was considered to be a steady value over the years. However, there is increasing observational evidence showing that this quantity undergoes substantial variations over time, which need to be addressed in different scenarios ranging from climate change to solar energy applications. With the growing interest in developing solar energy technology with enhanced efficiency and optimized management, the monitoring of solar irradiance at the ground level is now considered to be a fundamental input in the pursuit of that goal. Here, we propose the first fiber-based distributed sensor able of monitoring ground solar irradiance in real time, with meter scale spatial resolutions over distances of several tens of kilometers (up to 100 km). The technique is based on an optical fiber reflectometry technique (CP-ϕOTDR), which enables real time and long-range high-sensitivity bolometric measurements of solar radiance with a single optical fiber cable and a single interrogator unit. The method is explained and analyzed theoretically. A validation of the method is proposed using a solar simulator irradiating standard optical fibers, where we demonstrate the ability to detect and quantify solar irradiance with less than a 0.1 W/m2 resolution.


1988 ◽  
Vol 42 (8) ◽  
pp. 1558-1563 ◽  
Author(s):  
D. D. Archibald ◽  
L. T. Lin ◽  
D. E. Honigs

A commercial Fourier transform infrared (FT-IR) spectrometer was modified for remote near-IR Raman spectroscopy. In one configuration, a single optical fiber was used to guide the excitation light to the specimen and to collect scattered light from the specimen. In an alternative configuration, separate fibers were used for excitation and collection. The optical fiber probes were used to record the Raman spectra of both liquid and solid specimens. The Raman scattering of the optical fibers interfered with the analyte signal. This fiber interference was affected by the optical properties of the specimen and the optical sampling configuration. These interferences were partially removed by subtracting a background spectrum. Potential applications and improvements are discussed.


2019 ◽  
Vol 11 (1) ◽  
pp. 13
Author(s):  
Joanna Ewa Moś ◽  
Karol Antoni Stasiewicz ◽  
Leszek Roman Jaroszewicz

The work describes the technology of a liquid crystal cell with a tapered optical fiber as an element providing light. The tapered optical fiber with the total optical loss of 0.22 ± 0.07 dB, the taper waist diameter of 15.5 ± 0.5 μm, and the elongation of 20.4 ± 0.3 mm has been used. The experimental results are presented for a liquid crystal cell filled with a mixture 1550* for parallel orientation of LC molecules to the cross section of the taper waist. Measurement results show the influence of the electrical field with voltage in the range of 0-200 V, without, as well as with different modulation for spectral characteristics. The sinusoidal and square signal shapes are used with a 1-10 Hz frequency range. Full Text: PDF ReferencesZ. Liu, H. Y. Tam, L. Htein, M. L.Vincent Tse, C. Lu, "Microstructured Optical Fiber Sensors", J. Lightwave Technol. 35, 16 (2017). CrossRef T. R. Wolinski, K. Szaniawska, S. Ertman1, P. Lesiak, A. W. Domański, R. Dabrowski, E. Nowinowski-Kruszelnicki, J. Wojcik "Influence of temperature and electrical fields on propagation properties of photonic liquid-crystal fibres", Meas. Sci. Technol. 17, 5 (2006). CrossRef K. Nielsen, D. Noordegraaf, T. Sørensen, A. Bjarklev,T. Hansen, "Selective filling of photonic crystal fibres", J. Opt. A: Pure Appl. Opt. 7, 8 (2005). CrossRef A. A. Rifat, G. A. Mahdiraji, D. M. Chow, Y, Gang Shee, R. Ahmed, F. Rafiq, M Adikan, "Photonic Crystal Fiber-Based Surface Plasmon Resonance Sensor with Selective Analyte Channels and Graphene-Silver Deposited Core", Sensors 15, 5 (2015) CrossRef Y. Huang, Z.Tian, L.P. Sun, D. Sun, J.Li, Y.Ran, B.-O. Guan "High-sensitivity DNA biosensor based on optical fiber taper interferometer coated with conjugated polymer tentacle", Opt. Express 23, 21 (2015). CrossRef X. Wang, O. S. Wolfbeis, "The 2016 Annual Review Issue", Anal. Chem., 88, 1 (2016). CrossRef Ye Tian, W. Wang, N. Wu, X. Zou, X.Wang, "Tapered Optical Fiber Sensor for Label-Free Detection of Biomolecules", Sensors 11, 4 (2011). CrossRef O. Katsunari, Fundamentals of Optical Waveguides, (London, Academic Press, (2006). DirectLink A. K. Sharma, J. Rajan, B.D. Gupta, "Fiber-Optic Sensors Based on Surface Plasmon Resonance: A Comprehensive Review", IEEE Sensors Journal 7, 8 (2007). CrossRef C. Caucheteur, T. Guo, J. Albert, "Review of plasmonic fiber optic biochemical sensors: improving the limit of detection", Anal. Bioanal.Chem. 407, 14 (2015). CrossRef S. F. Silva L. Coelho, O. Frazão, J. L. Santos, F. X.r Malcata, "A Review of Palladium-Based Fiber-Optic Sensors for Molecular Hydrogen Detection", IEEE SENSORS JOURNAL 12, 1 (2012). CrossRef H. Waechter, J. Litman, A. H. Cheung, J. A. Barnes, H.P. Loock, "Chemical Sensing Using Fiber Cavity Ring-Down Spectroscopy", Sensors 10, 3 (2010). CrossRef S. Zhu, F. Pang, S. Huang, F.Zou, Y.Dong, T.Wang, "High sensitivity refractive index sensor based on adiabatic tapered optical fiber deposited with nanofilm by ALD", Opt. Express 23, 11 (2015). CrossRef L. Zhang, J. Lou, L. Tong, "Micro/nanofiber optical sensors", Photonics sensor 1, 1 (2011). CrossRef L.Tong, J. Lou, E. Mazur, "Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides", Opt. Express 11, 6 (2004). CrossRef H. Moyyed, I. T. Leite, L. Coelho, J. L. Santos, D. Viegas, "Analysis of phase interrogated SPR fiber optic sensors with bimetallic layers", IEEE Sensors Journal 14, 10 (2014). CrossRef A. González-Cano, M. Cruz Navarette, Ó. Esteban, N. Diaz Herrera , "Plasmonic sensors based on doubly-deposited tapered optical fibers", Sensors 14, 3 (2014). CrossRef K. A. Stasiewicz, J.E. Moś, "Threshold temperature optical fibre sensors", Opt. Fiber Technol. 32, (2016). CrossRef L. Zhang, F. Gu, J. Lou, X. Yin, L. Tong, "Fast detection of humidity with a subwavelength-diameter fiber taper coated with gelatin film", Opt. Express 16, 17 (2008). CrossRef S.Zhu, F.Pang, S. Huang, F. Zou, Q. Guo, J. Wen, T. Wang, "High Sensitivity Refractometer Based on TiO2-Coated Adiabatic Tapered Optical Fiber via ALD Technology", Sensors 16, 8 (2016). CrossRef G.Brambilla, "Optical fibre nanowires and microwires: a review", J. Optics 12, 4 (2010) CrossRef M. Ahmad, L.L. Hench, "Effect of taper geometries and launch angle on evanescent wave penetration depth in optical fibers", Biosens. Bioelectron. 20, 7 (2005). CrossRef L.M. Blinov, Electrooptic Effects in Liquid Crystal Materials (New York, Springftianer, 1994). CrossRef L. Scolari, T.T. Alkeskjold, A. Bjarklev, "Tunable Gaussian filter based on tapered liquid crystal photonic bandgap fibre", Electron. Lett. 42, 22 (2006). CrossRef J. Moś, M. Florek, K. Garbat, K.A. Stasiewicz, N. Bennis, L.R. Jaroszewicz, "In-Line Tunable Nematic Liquid Crystal Fiber Optic Device", J. of Lightwave Technol. 36, 4 (2017). CrossRef J. Moś, K A Stasiewicz, K Garbat, P Morawiak, W Piecek, L R Jaroszewicz, "Tapered fiber liquid crystal hybrid broad band device", Phys. Scripta. 93, 12 (2018). CrossRef Ch. Veilleux, J. Lapierre, J. Bures, "Liquid-crystal-clad tapered fibers", Opt. Lett. 11, 11 (1986). CrossRef R. Dąbrowski, K. Garbat, S. Urban, T.R. Woliński, J. Dziaduszek, T. Ogrodnik, A,Siarkowska, "Low-birefringence liquid crystal mixtures for photonic liquid crystal fibres application", Liq. Cryst. 44, (2017). CrossRef S. Lacroix, R. J. Black, Ch. Veilleux, J. Lapierre, "Tapered single-mode fibers: external refractive-index dependence", Appl. Opt., 25, 15 (1986). CrossRef J.F. Henninot, D. Louvergneaux , N.Tabiryan, M. Warenghem, "Controlled Leakage of a Tapered Optical Fiber with Liquid Crystal Cladding", Mol. Cryst.and Liq.Cryst., 282, 1(1996). CrossRef


2005 ◽  
Vol 870 ◽  
Author(s):  
A. Dhawan ◽  
T. K. Ghosh ◽  
J. F. Muth

Optical fiber sensors have many attractive attributes including high sensitivity, environmental robustness, immunity to electromagnetic interference, and the ability to be remotely interrogated. Furthermore, by incorporating optical fibers into woven and nonwoven fabrics these sensors can be distributed across large areas. In woven optical fibers, microscopic bending is an issue due to the fibers going over and under the yarns. Microscopic and macroscopic bending losses are quantified by placing optical fibers on frames of different radii of curvature and measuring the loss of transmitted light. As an example of the non-woven process, electrospinning was used to overlay a net of sub-micron diameter fibers over the optical fibers. This protects the optical fiber, holds it in place, while still permitting flexibility. To form chemical sensors, standard telecommunications grade optical fibers were tapered such that the evanescent wave extended into the environment. Coating the fibers with a thin layer of gold then permits surface plasmon sensors to be formed. However, the resulting sensors were very fragile and hard to place into fabrics. As a result alternative processes were developed that form fiber structures that are robust enough to withstand textile manufacturing processes yet still allow interaction with the environment.


Sensors ◽  
2020 ◽  
Vol 20 (15) ◽  
pp. 4215
Author(s):  
Changxu Li ◽  
Wenlong Yang ◽  
Min Wang ◽  
Xiaoyang Yu ◽  
Jianying Fan ◽  
...  

In order to improve the performance of fiber sensors and fully tap the potential of optical fiber sensors, various optical materials have been selectively coated on optical fiber sensors under the background of the rapid development of various optical materials. On the basis of retaining the original characteristics of the optical fiber sensors, the coated sensors are endowed with new characteristics, such as high sensitivity, strong structure, and specific recognition. Many materials with a large thermal optical coefficient and thermal expansion coefficients are applied to optical fibers, and the temperature sensitivities are improved several times after coating. At the same time, fiber sensors have more intelligent sensing capabilities when coated with specific recognition materials. The same/different kinds of materials combined with the same/different fiber structures can produce different measurements, which is interesting. This paper summarizes and compares the fiber sensors treated by different coating materials.


2020 ◽  
Vol 12 (1) ◽  
pp. 4
Author(s):  
Yuqing Li ◽  
Kuo Li ◽  
Guoyong Liu ◽  
Juan Tian ◽  
Yanchun Wang

Fiber Bragg grating (FBG) accelerometers using transverse forces have higher sensitivity but lower resonant frequency than ones using axial forces. By shortening the distance between the two fixed ends of the FBG, the resonant frequency can be improved without lowing the sensitivity. Here, a compact FBG accelerometer using transverse forces with a slightly pre-relaxed FBG and 25mm distance between the two fixed ends has been demonstrated with the crest-to-trough sensitivity 1.1nm/g at 5Hz and the resonant frequency 42Hz. It reveals that making the FBG slightly pre-relaxed rather than pre-stretched also improves the tradeoff between the sensitivity and resonant frequency. Full Text: PDF References:Kawasaki, B. S. , Hill, K. O , Johnson, D. C. , & Fujii, Y. , "Narrow-band Bragg reflectors in optical fibers", Optics Letters 3, 66 (1978) [CrossRef]K. O. Hill, and G. Meltz, "Fiber Bragg grating technology fundamentals and overview", Journal of Lightwave Technology 15, 1263 (1997) [CrossRef]B. Lee, "Review of the present status of optical fiber sensors", Optical Fiber Technology, 9, 57-79 (2003) [CrossRef]Laudati, A. , Mennella, F. , Giordano, M. , D"Altrui, G. , Tassini, C. C. , & Cusano, A., "A Fiber-Optic Bragg Grating Seismic Sensor", IEEE Photonics Technology Letters, 19, 1991 (2007) [CrossRef]P. F. Costa Antunes, C. A. Marques, H. Varum, and P. S. Andre, "Biaxial Optical Accelerometer and High-Angle Inclinometer With Temperature and Cross-Axis Insensitivity", IEEE Sens. J. 12, 2399 (2012) [CrossRef]Guo, Y. , Zhang, D. , Zhou, Z. , Xiong, L. , & Deng, X., "Welding-packaged accelerometer based on metal-coated FBG", Chinese Optics Letters, 11, 21 (2013). [CrossRef]Zhang, Y. , Zhang, W. , Zhang, Y. , Chen, L. , Yan, T. , & Wang, S. , et al., "2-D Medium–High Frequency Fiber Bragg Gratings Accelerometer", IEEE Sensors Journal, 17, 614(2017) [CrossRef]Xiu-bin Zhu, "A novel FBG velocimeter with wind speed and temperature synchronous measurement", Optoelectronics Letters, 14, 276-279 (2018) [CrossRef]Li, K. , Yau, M. H. , Chan, T. H. T. , Thambiratnam, D., "Fiber Bragg grating strain modulation based on nonlinear string transverse-force amplifier", & Tam, H. Y. , Optics Letters, 38, 311 (2013) [CrossRef]Li, K. , Chan, T. H. T. , Yau, M. H. , Nguyen, T. , Thambiratnam, D. P. , & Tam, H. Y., "Very sensitive fiber Bragg grating accelerometer using transverse forces with an easy over-range protection and low cross axial sensitivity", Applied Optics, 52, 6401 (2013) [CrossRef]Li, K. , Chan, T. H. T. , Yau, M. H. , Thambiratnam, D. P. , & Tam, H. Y., "Biaxial Fiber Bragg Grating Accelerometer Using Axial and Transverse Forces", IEEE Photonics Technology Letters, 26, 1549 (2014). [CrossRef]Li, K. , Chan, T. H. , Yau, M. H. , Thambiratnam, D. P. , & Tam, H. Y., "Experimental verification of the modified spring-mass theory of fiber Bragg grating accelerometers using transverse forces", Applied Optics, 53, 1200-1211(2014) [CrossRef]


Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 806
Author(s):  
Ning Wang ◽  
Wenhao Tian ◽  
Haosheng Zhang ◽  
Xiaodan Yu ◽  
Xiaolei Yin ◽  
...  

An easily fabricated Fabry-Perot optical fiber humidity sensor with high performance was presented by filling Graphene Quantum Dots (GQDs) into the Fabry-Perot resonator, which consists of two common single mode optical fibers. The relative humidity sensing performance was experimentally investigated by an interference spectrum drift between 11 %RH to 85 %RH. 0.567 nm/%RH sensitivity and 0.99917 linear correlation were found in experiments that showed high sensitivity, good and wide-range linear responding. Meanwhile, its good responding repeatability was demonstrated by two circle tests with increasing and decreasing relative humidity. For investigating the measurement influence caused by a temperature jitter, the temperature responding was experimentally investigated, which showed its linear responding with 0.033 nm/°C sensitivity. The results demonstrate the humidity sensitivity is greatly higher than the temperature sensitivity. The wavelength shift influence is 0.0198 nm with 0.6 °C max temperature jitter in the experiment, which can be ignored in humidity experiments. The fast-dynamic responses at typical humidity were demonstrated in experiments, with 5.5 s responding time and 8.5 s recovering time. The sensors with different cavity lengths were also investigated for their humidity response. All sensors gave good linear responding and high sensitivity. In addition, the relation curve between cavity length and response sensitivity also had good linearity. The combination of GQDs and single mode optical fibers showed easy fabrication and good performance for an optical fiber relative humidity sensor.


2021 ◽  
Author(s):  
Lokendra Singh ◽  
Niteshkumar Agarwal ◽  
Himnashu Barthwal ◽  
Bhupal Arya ◽  
Taresh Singh

The unique properties of optical fibers such as small size, immunity to electromagnetic radiation, high sensitivity with simpler sensing systems have found their applications from structural monitoring to biomedical sensing. The inclusion of optical transducers, integrated electronics and new immobilization methods, the optical fibers have been used in industrial process, environmental monitoring, food processing and clinical applications. Further, the optical fiber sensing research has also been extended to the area of detection of micro-organisms such as bacteria, viruses, fungi and protozoa. The validation of optical fibers in bio-sensing applications can be observed from the growing number of publications. This chapter provides a brief picture of optical fiber biosensors, their geometries including the necessary procedure for their development. This chapter could be a milestone for the young researchers to establish their laboratory.


Sign in / Sign up

Export Citation Format

Share Document