Preliminary Set Up of the Methodology to Analyze Nuclear Fuel Cycle Scenarios

Author(s):  
Barbara Vezzoni ◽  
Giuseppe Forasassi

This work focuses on the definition of a suitable methodology to compare different nuclear energy options, with particular attention to strategies able to minimize nuclear wastes. In order to set possible transition scenarios from actual GEN-II reactors, the energy demand and the nuclear energy share up to 2050 have been evaluated by means of data available in the international literature. To compare the different options, major indicators of energy-electricity sector have been analyzed. With particular attention to nuclear energy social acceptability the major indicators investigated are the inventory and the radiotoxicity vs. time of residual wastes. In order to reach a final equilibrium situation, transition scenarios, where GEN-III (e.g. EPR) and GEN-IV new reactors (as lead cooled fast ones), have been analyzed. As cases study Spain and France scenarios have been considered.

2018 ◽  
Vol 4 (1) ◽  
pp. 27-33
Author(s):  
Vladimir I. Usanov ◽  
Stepan A. Kviatkovskii ◽  
Andrey A. Andrianov

The paper describes the approach to the assessment of nuclear energy systems based on the integral indicator characterizing the level of their sustainability and results of comparative assessment of several nuclear energy system options incorporating different combinations of nuclear reactors and nuclear fuel cycle facilities. The nuclear energy systems are characterized by achievement of certain key events pertaining to the following six subject areas: economic performance, safety, availability of resources, waste handling, non-proliferation and public support. Achievement of certain key events is examined within the time interval until 2100, while the key events per se are assessed according to their contribution in the achievement of sustainable development goals. It was demonstrated that nuclear energy systems based on the once-through nuclear fuel cycle with thermal reactors and uranium oxide fuel do not score high according to the integral sustainable development indicator even in the case when the issue of isolation of spent nuclear fuel in geological formation is resolved. Gradual replacement of part of thermal reactors with fast reactors and closing the nuclear fuel cycle results in the achievement of evaluated characteristics in many subject areas, which are close to maximum requirements of sustainable development, and in the significant enhancement of the sustainability indicator.


2013 ◽  
Author(s):  
Peter McIntyre ◽  
Saeed Assadi ◽  
Karie Badgley ◽  
William Baker ◽  
Justin Comeaux ◽  
...  

Author(s):  
Marco Ciotti ◽  
Jorge L. Manzano ◽  
Vladimir Kuznetsov ◽  
Galina Fesenko ◽  
Luisa Ferroni ◽  
...  

Financial aspects, environmental concerns and non-favorable public opinion are strongly conditioning the deployment of new Nuclear Energy Systems across Europe. Nevertheless, new possibilities are emerging to render competitive electricity from Nuclear Power Plants (NPPs) owing to two factors: the first one, which is the fast growth of High Voltage lines interconnecting the European countries’ national electrical grids, this process being triggered by huge increase of the installed intermittent renewable electricity sources (Wind and PV); and the second one, determined by the carbon-free constraints imposed on the base load electricity generation. The countries that due to public opinion pressure can’t build new NPPs on their territory may find it profitable to produce base load nuclear electricity abroad, even at long distances, in order to comply with the European dispositions on the limitation of the CO2 emissions. In this study the benefits from operating at multinational level with the deployment of a fleet of PWRs and subsequently, at a proper time, the one of Lead Fast Reactors (LFRs) are analyzed. The analysis performed involves Italy (a country with a current moratorium on nuclear power on spite that its biggest utility operates NPPs abroad), and the countries from South East and Central East Europe potentially looking for introduction or expansion of their nuclear power programmes. According to the predicted evolution of their Gross Domestic Product (GDP) a forecast of the electricity consumption evolution for the present century is derived with the assumption that a certain fraction of it will be covered by nuclear electricity. In this context, evaluated are material balances for the front and the back end of nuclear fuel cycle associated with the installed nuclear capacity. A key element of the analysis is the particular type of LFR assumed in the scenario, characterized by having a fuel cycle where only fission products and the reprocessing losses are sent for disposition and natural or depleted uranium is added to fuel in each reprocessing cycle. Such LFR could be referred to as “adiabatic reactor”. Owing to introduction of such reactors a substantive reduction in uranium consumption and final disposal requirements can be achieved. Finally, the impacts of the LFR and the economy of scale in nuclear fuel cycle on the Levelized Cost of Electricity (LCOE) are being evaluated, for scaling up from a national to a multinational dimension, illustrating the benefits potentially achievable through cooperation among countries.


2020 ◽  
Vol 2 (1-2) ◽  
pp. 98-111
Author(s):  
David Lowe

Abstract I ask in this article whether the legacies of Australia’s nuclear past, including the great secrecy surrounding testing of weapons in the 1950s and 1960s, and subsequent clean-ups, have impacted in particular ways that have ongoing ramifications for policy relating to uranium mining and nuclear energy. My starting point is the sustained examination of the pros and cons of developing the nuclear fuel cycle in Australia, a Parliamentary Committee Inquiry from 2006. Contrasting the submissions and discussions of this committee with exhibition and educational materials relating to the legacies of atomic testing, I suggest that one of the biggest opportunities for constructive policy conversation on nuclear energy suffered from the absence of trust among different groups. This derived, in good measure, from distinctive features in popular remembering of Australia’s atomic past. In 2006, it fed the exasperation of nuclear advocates who did not, and perhaps still do not, appreciate that the neat separation of uranium mining and energy generation from Australia’s earlier encounters with the atom is very hard. Relatedly, I argue that the secrecy around governments’ involvement in atomic testing, and its legacies, is likely to be seized on regularly; and likely to sustain what is a reservoir of public mistrust of government policy.


2012 ◽  
Vol 4 (10) ◽  
pp. 2377-2398 ◽  
Author(s):  
Stefano Passerini ◽  
Mujid Kazimi

The nuclear fuel cycle is the series of stages that nuclear fuel materials go through in a cradle to grave framework. The Once Through Cycle (OTC) is the current fuel cycle implemented in the United States; in which an appropriate form of the fuel is irradiated through a nuclear reactor only once before it is disposed of as waste. The discharged fuel contains materials that can be suitable for use as fuel. Thus, different types of fuel recycling technologies may be introduced in order to more fully utilize the energy potential of the fuel, or reduce the environmental impacts and proliferation concerns about the discarded fuel materials. Nuclear fuel cycle systems analysis is applied in this paper to attain a better understanding of the strengths and weaknesses of fuel cycle alternatives. Through the use of the nuclear fuel cycle analysis code CAFCA (Code for Advanced Fuel Cycle Analysis), the impact of a number of recycling technologies and the associated fuel cycle options is explored in the context of the U.S. energy scenario over 100 years. Particular focus is given to the quantification of Uranium utilization, the amount of Transuranic Material (TRU) generated and the economics of the different options compared to the base-line case, the OTC option. It is concluded that LWRs and the OTC are likely to dominate the nuclear energy supply system for the period considered due to limitations on availability of TRU to initiate recycling technologies. While the introduction of U-235 initiated fast reactors can accelerate their penetration of the nuclear energy system, their higher capital cost may lead to continued preference for the LWR-OTC cycle.


2021 ◽  
Vol 7 ◽  
pp. 26
Author(s):  
S. Richards ◽  
B. Feng

The ability to perform sensitivity analysis has been enabled for the nuclear fuel cycle simulator DYMOND through its coupling with the design and analysis toolkit Dakota. To test and demonstrate these new capabilities, a transition scenario and multi-parameter study were devised. The transition scenario represents a partial transition from the US nuclear fleet to a closed fuel cycle with small modular LWRs and fast reactors fueled by reprocessed used nuclear fuel. Four uncertain parameters in this transition were studied – start date of reprocessing, total reprocessing capacity, the nuclear energy demand growth, and the rate at which the fast reactors are deployed – with respect to their impact on four response metrics. The responses – total natural uranium consumed, maximum annual enrichment capacity required, total disposed mass, and total cost of the nuclear fuel cycle – were chosen based on measures known to be of interest in transition scenarios [2] and to be significantly impacted by the varying parameters. Analysis of this study was performed both from the direct sampling and through surrogate models developed in Dakota to calculate the global sensitivity measures Sobol’ indices. This example application of this new capability showed that the most consequential parameter to most metrics was the share of new build capacity that is fast reactors. However, for the cost metric, the scaling factor of the energy demand growth was significant and had synergistic behavior with the fast reactor new build share.


2014 ◽  
Vol 1 (2) ◽  
pp. 273-286 ◽  
Author(s):  
Togzhan Kassenova

Kazakhstan’s advanced nuclear industry and active foreign nuclear policy make it a significant player on the global nuclear scene. This article sets the stage by addressing Kazakhstan’s nuclear inheritance from the Soviet period. It then provides an overview of the country’s nuclear sector with an emphasis on the nuclear fuel cycle and on prospects for introducing nuclear energy into Kazakhstan’s energy mix. The article’s final section analyzes Astana’s nuclear diplomacy on the international global nuclear scene.


2009 ◽  
Vol 2009 ◽  
pp. 1-13 ◽  
Author(s):  
Guido Mazzini ◽  
Eleonora Bomboni ◽  
Nicola Cerullo ◽  
Emil Fridman ◽  
Guglielmo Lomonaco ◽  
...  

Nowadays nuclear is the only greenhouse-free source that can appreciably respond to the increasing worldwide energy demand. The use of Thorium in the nuclear energy production may offer some advantages to accomplish this task. Extensive R&D on the thorium fuel cycle has been conducted in many countries around the world. Starting from the current nuclear waste policy, the EU-PUMA project focuses on the potential benefits of using the HTR core as a Pu/MA transmuter. In this paper the following aspects have been analysed: (1) the state-of-the-art of the studies on the use of Th in different reactors, (2) the use of Th in HTRs, with a particular emphasis on Th-Pu fuel cycles, (3) an original assessment of Th-Pu fuel cycles in HTR. Some aspects related to Thorium exploitation were outlined, particularly its suitability for working in pebble-bed HTR in a Th-Pu fuel cycle. The influence of the Th/Pu weight fraction at BOC in a typical HTR pebble was analysed as far as the reactivity trend versus burn-up, the energy produced per Pu mass, and the Pu isotopic composition at EOC are concerned. Although deeper investigations need to be performed in order to draw final conclusions, it is possible to state that some optimized Th percentage in the initial Pu/Th fuel could be suggested on the basis of the aim we are trying to reach.


Sign in / Sign up

Export Citation Format

Share Document