Experiments and Simulations on the Steady-State and Transient Behavior of Gas/Liquid Interfaces in Impulse Pipes for Hydrostatic Level Measurements

Author(s):  
Stephan Schulz ◽  
Rainer Hampel

For Boiling Water Reactors (BWR) and steam generators, the water level is a safety-relevant process variable. The most commonly applied measuring method is based on the calculation of the liquid level from geodetic pressure differences to a reference column of defined height and density. However, transition processes occurring under operational and accident conditions may lead to dynamic changes in the reference level and therefore to fluctuations in the differential pressure signal. This paper presents experiments and numerical simulations on the steady-state and transient behavior of gas/liquid phase boundaries in “Zero Chamber Level Vessels” (ZCLV). In these slightly inclined miniature tubes, the constant reference level is provided by surface tension forces and the capillary effect, respectively. To investigate the basic topology of gas/liquid interfaces under simplified conditions (environmental parameters, no heat transfer), a test facility with optical access was developed. The construction allows for variations of the inner tube diameter, inclination angle and liquid mass flow rate, respectively. By this means, experiments on phase boundaries were carried out for ethanol/air and water/air. The results provide information about the impact of geometry parameters and their interactions on the interface topology. In addition, the dynamic draining of excess liquid mass at the free end of the tube and at artificial weld seams, which is supposed to be the reason for temperature fluctuations observed in ZCLV during power operation of BWR, was experimentally analyzed. The measurements represent the basis for an experimental validation and optimizations of the numerical flow code ANSYS CFX 12.0. In the next step, water/vapor phase boundaries at 286 °C and 70 bar will be investigated by applying x-ray radiography to a scale model. The results will be discussed in context with the hydrostatic level measurement in BWR.

2013 ◽  
Vol 135 (3) ◽  
Author(s):  
Stephan Schulz ◽  
Rainer Hampel

For boiling water reactors (BWR) and steam generators, the water level is a safety-relevant process variable. The most commonly applied measuring method is based on the calculation of the liquid level from geodetic pressure differences to a reference column of defined height and density. However, transition processes occurring under operational and accident conditions may lead to dynamic changes in the reference level and, therefore, to fluctuations in the differential pressure signal. This paper presents experiments and numerical simulations on the steady-state and transient behavior of gas/liquid phase boundaries in “zero chamber level vessels” (ZCLV). In these slightly inclined miniature tubes, the constant reference level is provided by surface tension forces and the capillary effect, respectively. To investigate the basic topology of gas/liquid interfaces under simplified conditions (environmental parameters, no heat transfer), a test facility with optical access was developed. The construction allows for variations of the inner tube diameter, inclination angle, and liquid mass flow rate, respectively. By this means, experiments on phase boundaries were carried out for ethanol/air and water/air. The results provide information about the impact of geometry parameters and their interactions on the interface topology. In addition, the dynamic draining of excess liquid mass at the free end of the tube and at artificial weld seams, which is supposed to be the reason for temperature fluctuations observed in ZCLV during power operation of BWR, was experimentally analyzed. The measurements represent the basis for an experimental validation and optimizations of the numerical flow code ANSYS CFX 12.0. In the next step, water/vapor phase boundaries at 286 °C and 70 bars will be investigated by applying X-ray radiography to a scale model. The results will be discussed in context with the hydrostatic level measurement in BWR.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Siyu Lyu ◽  
Daogang Lu ◽  
Danting Sui

The Fast Flux Test Facility (FFTF) is a liquid sodium-cooled nuclear reactor designed by the Westinghouse Electric Corporation for the U.S. Department of Energy. In July 1986, a series of unprotected transients were performed to demonstrate the passive safety of FFTF. Among these, a total of 13 loss-of-flow-without scram (LOFWOS) tests were conducted to confirm the liquid metal reactor safety margins, provide data for computer code validation, and demonstrate the inherent and passive safety benefits of specific design features. In our preliminary work, we have performed relatively coarse modeling of the FFTF. To better predict the transient behavior of FFTF LOFWOS test #13, we modeled it using a more refined thermal-hydraulics model. In this paper, we simulate FFTF LOFWOS test #13 with the system safety analysis code SAC-3D according to the benchmark specifications provided by Argonne National Laboratory (ANL). The simulation range includes the primary and secondary circuits. The reactor core was modeled by the built-in 3D neutronics calculation module and the parallel-channel thermal-hydraulics calculation module. To better predict the reactivity feedback introduced by coolant level variations within the GEMs, a real-time macro cross-section homogenization processing module was developed. The steady-state power distribution was calculated as the transient simulation initial boundary conditions. In general, both the steady-state calculation results and the whole-plant transient behavior predictions are in good agreement with the measured data. The relatively large deviations in transient simulation occur in the outlet temperature predictions of the PIOTA in row 6. It can be preliminarily explained by the reason for neglecting the heat transfer between channels in this model.


1983 ◽  
Vol 105 (4) ◽  
pp. 439-446 ◽  
Author(s):  
D. R. Boyle ◽  
M. W. Golay

Turbulent flow measurements have been performed in a two-dimensional flow cell which is a 1/15-scale model of the Fast Flux Test Facility nuclear reactor outlet plenum. In a steady water flow, maps of the mean velocity field, turbulence kinetic energy, and Reynolds stress have been obtained using a laser doppler anemometer. The measurements are compared to numerical simulations using both the K–ε and K–σ two-equation turbulence models. A relationship between K–σ and K–ε turbulence models is derived, and the two models are found to be nearly equivalent. The steady-state mean velocity data are predicted well through-out most of the test cell. Calculated spatial distributions of the scalar turbulence quantities are qualitatively similar for both models; however, the predicted distributions do not match the data over major portions of the flow area. The K–σ model provides better estimates of the turbulence quantity magnitudes. The predicted results are highly sensitive to small changes in the turbulence model constants and depend heavily on the levels of inlet turbulence. However, important differences between prediction and measurement cannot be significantly reduced by simple changes to the model’s constants.


1996 ◽  
Vol 118 (1) ◽  
pp. 123-133 ◽  
Author(s):  
R. S. Abhari

The goal of this study is to quantify the impact of rotor–stator interaction on surface heat transfer of film cooled turbine blades. In Section I, a steady-state injection model of the film cooling is incorporated into a two-dimensional, thin shear layer, multiblade row CFD code. This injection model accounts for the penetration and spreading of the coolant jet, as well as the entrainment of the boundary layer fluid by the coolant. The code is validated, in the steady state, by comparing its predictions to data from a blade tested in linear cascade. In Section II, time-resolved film cooled turbine rotor heat transfer measurements are compared with numerical predictions. Data were taken on a fully film cooled blade in a transonic, high pressure ratio, single-stage turbine in a short duration turbine test facility, which simulates full-engine nondimensional conditions. Film cooled heat flux on the pressure surface is predicted to be as much as a factor of two higher in the time average of the unsteady calculations compared to the steady-state case. Time-resolved film cooled heat transfer comparison of data to prediction at two spanwise positions is used to validate the numerical code. The unsteady stator–rotor interaction results in the pulsation of the coolant injection flow out of the film holes with large-scale fluctuations. The combination of pulsating coolant flow and the interaction of the coolant with this unsteady external flow is shown to lower the local pressure side adiabatic film effectiveness by as much as 64 percent when compared to the steady-state case.


1995 ◽  
Vol 31 (1) ◽  
pp. 61-70 ◽  
Author(s):  
Graham F. White

Many organic pollutants, especially synthetic surfactants, adsorb onto solid surfaces in natural and engineered aquatic environments. Biofilm bacteria on such surfaces make major contributions to microbial heterotrophic activity and biodegradation of organic pollutants. This paper reviews evidence for multiple interactions between surfactants, biodegradative bacteria, and sediment-liquid interfaces. Biodegradable surfactants e.g. SDS, added to a river-water microcosm were rapidly adsorb to sediment surface and stimulated the indigenous bacteria to attach to the sediment particles. Recalcitrant surfactants and non-surfactant organic nutrients did not stimulate attachment Attachment of bacteria was maximal when biodegradation was fastest, and was reversed when biodegradation was complete. Dodecanol, the primary product of SDS-biodegradation, markedly stimulated attachment. When SDS was added to suspensions containing sediment and either known degraders or known non-degraders, only the degraders became attached, and attachment accelerated surfactant biodegradation to dodecanol. These cyclical cooperative interactions have implications for the design of biodegradability-tests, the impact of surfactant adjuvants on biodegradability of herbicides/pesticides formulated with surfactants, and the role of surfactants used to accelerate bioremediation of hydrocarbon-polluted soils.


Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 367
Author(s):  
Konstantinos Giannokostas ◽  
Yannis Dimakopoulos ◽  
Andreas Anayiotos ◽  
John Tsamopoulos

The present work focuses on the in-silico investigation of the steady-state blood flow in straight microtubes, incorporating advanced constitutive modeling for human blood and blood plasma. The blood constitutive model accounts for the interplay between thixotropy and elasto-visco-plasticity via a scalar variable that describes the level of the local blood structure at any instance. The constitutive model is enhanced by the non-Newtonian modeling of the plasma phase, which features bulk viscoelasticity. Incorporating microcirculation phenomena such as the cell-free layer (CFL) formation or the Fåhraeus and the Fåhraeus-Lindqvist effects is an indispensable part of the blood flow investigation. The coupling between them and the momentum balance is achieved through correlations based on experimental observations. Notably, we propose a new simplified form for the dependence of the apparent viscosity on the hematocrit that predicts the CFL thickness correctly. Our investigation focuses on the impact of the microtube diameter and the pressure-gradient on velocity profiles, normal and shear viscoelastic stresses, and thixotropic properties. We demonstrate the microstructural configuration of blood in steady-state conditions, revealing that blood is highly aggregated in narrow tubes, promoting a flat velocity profile. Additionally, the proper accounting of the CFL thickness shows that for narrow microtubes, the reduction of discharged hematocrit is significant, which in some cases is up to 70%. At high pressure-gradients, the plasmatic proteins in both regions are extended in the flow direction, developing large axial normal stresses, which are more significant in the core region. We also provide normal stress predictions at both the blood/plasma interface (INS) and the tube wall (WNS), which are difficult to measure experimentally. Both decrease with the tube radius; however, they exhibit significant differences in magnitude and type of variation. INS varies linearly from 4.5 to 2 Pa, while WNS exhibits an exponential decrease taking values from 50 mPa to zero.


2012 ◽  
Vol 134 (2) ◽  
Author(s):  
Joseph R. Wasniewski ◽  
David H. Altman ◽  
Stephen L. Hodson ◽  
Timothy S. Fisher ◽  
Anuradha Bulusu ◽  
...  

The next generation of thermal interface materials (TIMs) are currently being developed to meet the increasing demands of high-powered semiconductor devices. In particular, a variety of nanostructured materials, such as carbon nanotubes (CNTs), are interesting due to their ability to provide low resistance heat transport from device-to-spreader and compliance between materials with dissimilar coefficients of thermal expansion (CTEs), but few application-ready configurations have been produced and tested. Recently, we have undertaken major efforts to develop functional nanothermal interface materials (nTIMs) based on short, vertically aligned CNTs grown on both sides of a thin interposer foil and interfaced with substrate materials via metallic bonding. A high-precision 1D steady-state test facility has been utilized to measure the performance of nTIM samples, and more importantly, to correlate performance to the controllable parameters. In this paper, we describe our material structures and the myriad permutations of parameters that have been investigated in their design. We report these nTIM thermal performance results, which include a best to-date thermal interface resistance measurement of 3.5 mm2 K/W, independent of applied pressure. This value is significantly better than a variety of commercially available, high-performance thermal pads and greases we tested, and compares favorably with the best results reported for CNT-based materials in an application-representative setting.


2015 ◽  
Vol 8 (1) ◽  
pp. 421-434 ◽  
Author(s):  
M. P. Jensen ◽  
T. Toto ◽  
D. Troyan ◽  
P. E. Ciesielski ◽  
D. Holdridge ◽  
...  

Abstract. The Midlatitude Continental Convective Clouds Experiment (MC3E) took place during the spring of 2011 centered in north-central Oklahoma, USA. The main goal of this field campaign was to capture the dynamical and microphysical characteristics of precipitating convective systems in the US Central Plains. A major component of the campaign was a six-site radiosonde array designed to capture the large-scale variability of the atmospheric state with the intent of deriving model forcing data sets. Over the course of the 46-day MC3E campaign, a total of 1362 radiosondes were launched from the enhanced sonde network. This manuscript provides details on the instrumentation used as part of the sounding array, the data processing activities including quality checks and humidity bias corrections and an analysis of the impacts of bias correction and algorithm assumptions on the determination of convective levels and indices. It is found that corrections for known radiosonde humidity biases and assumptions regarding the characteristics of the surface convective parcel result in significant differences in the derived values of convective levels and indices in many soundings. In addition, the impact of including the humidity corrections and quality controls on the thermodynamic profiles that are used in the derivation of a large-scale model forcing data set are investigated. The results show a significant impact on the derived large-scale vertical velocity field illustrating the importance of addressing these humidity biases.


2016 ◽  
Vol 2016 ◽  
pp. 1-19 ◽  
Author(s):  
Xiaohui Jia ◽  
Minghui Jiang ◽  
Lei Shi

From the perspective of the interactive cooperation among subjects, this paper portrays the process of cooperative innovation in industrial cluster, in order to capture the correlated equilibrium relationship among them. Through the utilization of two key tools, evolutionary stable strategy and replicator dynamics equations, this paper considers the cost and gains of cooperative innovation and the amount of government support as well as other factors to build and analyze a classic evolutionary game model. On this basis, the subject’s own adaptability is introduced, which is regarded as the system noise in the stochastic evolutionary game model so as to analyze the impact of adaptability on the game strategy selection. The results show that, in the first place, without considering subjects’ adaptability, their cooperation in industrial clusters depends on the cost and gains of innovative cooperation, the amount of government support, and some conditions that can promote cooperation, namely, game steady state. In the second place after the introduction of subjects’ adaptability, it will affect both game theory selection process and time, which means that the process becomes more complex, presents the nonlinear characteristics, and helps them to make faster decisions in their favor, but the final steady state remains unchanged.


Sign in / Sign up

Export Citation Format

Share Document