Development of a Finite Element Model of the Human Shoulder

1999 ◽  
Author(s):  
Masami Iwamoto ◽  
Kazuo Miki ◽  
Babushankar Sambamoorthy ◽  
King H. Yang ◽  
Albert I. King

Abstract During an automotive side impact, the shoulder is likely to be the first body part that is directly impacted either by the internal structures of the vehicle or by the side airbag. Therefore, a good understanding of the injury mechanism and the kinematics of the shoulder is critical for occupant protection in side impact. Existing side impact crash dummies do not have structures that are capable of reproducing the kinematics and kinetics of a human occupant. Over the past several years, many numerical models have been developed from head to foot in an attempt to overcome the shortcomings of these crash dummies. However, relatively few attempts have been made to include the shoulder. The purpose of this study is to develop a finite element model of the human shoulder in order to achieve a deeper understanding of the injury mechanism and the kinematics of the shoulder in side impacts. Basic anthropometric data used to develop the skeletal portion of the shoulder model were taken from a commercial data package of the human shoulder geometry (Viewpoint Datalabs). This geometry was scaled to fit a 50th percentile male occupant according to the data reported by Schneider et al. (1983). The shoulder model included the three bones of the shoulder, namely the humerus, scapula and clavicle. Each bone was modeled in two parts. The spongy bone was modeled using crushable solids and the cortical bone was modeled using damageable shell elements. The model also includes major ligaments, which form the acromioclavicular and sternoclavicular articulations. The deltoid muscle, which was modeled by crushable solids in order to absorb part of the impact energy, was added to this model for lateral impact simulations. This shoulder model was then integrated with a human thorax model developed by Wang (1995), along with other preexisting models of other parts of the human anatomy. Material properties for the model were taken from the literature. Experimental data obtained from lateral impact sled tests of 17 cadavers conducted at Wayne State University were used to validate the model. Impact forces in four regions, specifically, the shoulder, thorax, abdomen and pelvis, were calculated by the model and were compared with forces obtained experimentally from rigid wall impacts at 6.7m/s and padded wall impacts at 8.9m/s.

Author(s):  
Prashant Khandelwal ◽  
Anil Kalra ◽  
Binhui Jiang ◽  
Anand Hammad ◽  
Xin Jin ◽  
...  

Physical surrogates and numerical models have been used to investigate the lower limb injury responses in blunt trauma related to occupant and pedestrian impacts during crash events. To date, automotive crash dummies used for studying the lower limb kinematics and injury responses in car crashes are designed to represent mid-age adults. But due to increase in fragility and frailty with age, the injury risk of the lower limb of elderly females is greater compared to younger adults. Thus, safety designs should expand for protecting elderly females in lower limb impacts. The current study focuses on developing a lower limb finite element model for elderly females with accurate anthropometry and anatomical details. The model was further validated against segmental and whole-body level experimental data of lower limb impact during pedestrian, frontal, and side impact loading. The validated model will be further integrated into the whole-body model to study injury mechanisms and safety designs for this vulnerable population of elderly females.


2017 ◽  
Vol 17 (07) ◽  
pp. 1740036 ◽  
Author(s):  
AILI QU ◽  
DONGMEI WANG ◽  
XIANGSEN ZENG ◽  
QIU’GEN WANG

Objective: To investigate and validate dynamic response of the pelvis, a finite element model of seated pelvic complex comprising of bone, ligaments, abdominal artery and soft tissue was developed and concurrently, a cadaver experiment was set up. Materials and Methods: Based on supine scanned CT images, we first developed an FE pelvic complex model and modified it to construct a seated pelvic model by anteriorly rotating the proximal femur to 90[Formula: see text]. For the cadaver experiment, a customized pelvic impact apparatus was designed and optical devices, strain gauges and pressure detectors were used to measure the pelvic response. Results: The results of the FE analysis and the cadaver tests were congruent in terms of impact force and fracture sites. Dynamic arterial response to the lateral impact showed hemodynamic instability that was displayed in pressure variation. The response of ligaments indicated that the posterior ligaments of pelvic ring experienced a larger amount of load. Conclusion: FE results provided the impact of ligaments and arteries besides impact force, compression (C) and viscous criterion (VC). Accordingly, the cadaver experiment measured arterial pressure, impact force, bone strain and compression. The compatibility between the FE and cadaver analyses demonstrates the high bio-fidelity of our pelvic complex model.


Author(s):  
Ramakrishnan Maruthayappan ◽  
Hamid M. Lankarani

Abstract The behavior of structures under the impact or crash situations demands an efficient modeling of the system for its behavior to be predicted close to practical situations. The various formulations that are possible to model such systems are spring mass models, finite element models and plastic hinge models. Of these three techniques, the plastic hinge theory offers a more accurate model compared to the spring mass formulation and is much simpler than the finite element models. Therefore, it is desired to model the structure using plastic hinges and to use a computational program to predict the behavior of structures. In this paper, the behavior of some simple structures, ranging from an elementary cantilever beam to a torque box are predicted. It is also shown that the plastic hinge theory is a reliable method by comparing the results obtained from a plastic hinge model of an aviation seat structure with that obtained from a finite element model.


2018 ◽  
Vol 9 (4) ◽  
pp. 504-524 ◽  
Author(s):  
Gaurav Nilakantan

This work presents the first fully validated and predictive finite element modeling framework to generate the probabilistic penetration response of an aramid woven fabric subjected to ballistic impact. This response is defined by a V0-V100 curve that describes the probability of complete fabric penetration as a function of projectile impact velocity. The exemplar case considered in this article comprises a single-layer, fully clamped, plain-weave Kevlar fabric impacted at the center by a 0.22 cal spherical steel projectile. The fabric finite element model comprises individually modeled three-dimensional warp and fill yarns and is validated against the experimental material microstructure. Sources of statistical variability including yarn strength and modulus, inter-yarn friction, and precise projectile impact location are mapped into the finite element model. A series of impact simulations at varying projectile impact velocities is executed using LS-DYNA on the fabric models, each comprising unique mappings. The impact velocities and outcomes (penetration, non-penetration) are used to generate the numerical V0-V100 curve which is then validated against the experimental V0-V100 curve obtained from ballistic impact testing and shown to be in excellent agreement. The experimental data and its statistical analysis used for model input and validation, namely, the Kevlar yarn tensile strengths and moduli, inter-yarn friction, and fabric ballistic impact testing, are also reported.


2020 ◽  
Vol 142 (7) ◽  
Author(s):  
Lauren Dawson ◽  
David Koncan ◽  
Andrew Post ◽  
Roger Zemek ◽  
Michael D. Gilchrist ◽  
...  

Abstract Accidental falls occur to people of all ages, with some resulting in concussive injury. At present, it is unknown whether children and adolescents are at a comparable risk of sustaining a concussion compared to adults. This study reconstructed the impact kinematics of concussive falls for children, adolescents, and adults and simulated the associated brain tissue deformations. Patients included in this study were diagnosed with a concussion as defined by the Zurich Consensus guidelines. Eleven child, 10 adolescent, and 11 adult falls were simulated using mathematical dynamic models(MADYMO), with three ellipsoid pedestrian models sized to each age group. Laboratory impact reconstruction was conducted using Hybrid III head forms, with finite element model simulations of the brain tissue response using recorded impact kinematics from the reconstructions. The results of the child group showed lower responses than the adolescent group for impact variables of impact velocity, peak linear acceleration, and peak rotational acceleration but no statistical differences existed for any other groups. Finite element model simulations showed the child group to have lower strain values than both the adolescent and adult groups. There were no statistical differences between the adolescent and adult groups for any variables examined in this study. With the cases included in this study, young children sustained concussive injuries at lower modeled brain strains than adolescents and adults, supporting the theory that children may be more susceptible to concussive impacts than adolescents or adults.


Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 4816
Author(s):  
Maria Grazia Romano ◽  
Michele Guida ◽  
Francesco Marulo ◽  
Michela Giugliano Auricchio ◽  
Salvatore Russo

Structural adhesives play an important role in aerospace manufacturing, since they provide fewer points of stress concentration compared to faster joints. The importance of adhesives in aerospace is increasing significantly because composites are being adopted to reduce weight and manufacturing costs. Furthermore, adhesive joints are also studied to determine the crashworthiness of airframe structure, where the main task for the adhesive is not to dissipate the impact energy, but to keep joint integrity so that the impact energy can be consumed by plastic work. Starting from an extensive campaign of experimental tests, a finite element model and a methodology are implemented to develop an accurate adhesive model in a single lap shear configuration. A single lap joint finite element model is built by MSC Apex, defining two specimens of composite material connected to each other by means of an adhesive; by the Digimat multi-scale modeling solution, the composite material is treated; and finally, by MSC’s Marc, the adhesive material is characterized as a cohesive applying the Cohesive Zone Modeling theory. The objective was to determine an appropriate methodology to predict interlaminar crack growth in composite laminates, defining the mixed mode traction separation law variability in function of the cohesive energy (Gc), the ratio between the shear strength τ and the tensile strength σ (β1), and the critical opening displacement υc.


2019 ◽  
Vol 22 (16) ◽  
pp. 3487-3502
Author(s):  
Hossein Moravej ◽  
Tommy HT Chan ◽  
Khac-Duy Nguyen ◽  
Andre Jesus

Structural health monitoring plays a significant role in providing information regarding the performance of structures throughout their life spans. However, information that is directly extracted from monitored data is usually susceptible to uncertainties and not reliable enough to be used for structural investigations. Finite element model updating is an accredited framework that reliably identifies structural behavior. Recently, the modular Bayesian approach has emerged as a probabilistic technique in calibrating the finite element model of structures and comprehensively addressing uncertainties. However, few studies have investigated its performance on real structures. In this article, modular Bayesian approach is applied to calibrate the finite element model of a lab-scaled concrete box girder bridge. This study is the first to use the modular Bayesian approach to update the initial finite element model of a real structure for two states—undamaged and damaged conditions—in which the damaged state represents changes in structural parameters as a result of aging or overloading. The application of the modular Bayesian approach in the two states provides an opportunity to examine the performance of the approach with observed evidence. A discrepancy function is used to identify the deviation between the outputs of the experimental and numerical models. To alleviate computational burden, the numerical model and the model discrepancy function are replaced by Gaussian processes. Results indicate a significant reduction in the stiffness of concrete in the damaged state, which is identical to cracks observed on the body of the structure. The discrepancy function reaches satisfying ranges in both states, which implies that the properties of the structure are predicted accurately. Consequently, the proposed methodology contributes to a more reliable judgment about structural safety.


2014 ◽  
Vol 577 ◽  
pp. 310-313
Author(s):  
Ping Yang ◽  
Zhou De Qu ◽  
Min Li

Based on the impact of some horizontal filtering tank’s instability in operation process on production, the present paper discusses the optimal design scheme for horizontal filtering tank structure with the help of finite element. Theoretical guidance will be given to enterprise from the perspective of finite element for the purpose of improving the horizontal filtering tank through constructing the finite element model for horizontal filtering tank with Creo parametric software, conducting simulation with workbench software[1] and finally arriving at the reasonable design scheme after analysis, thus avoiding the structural instability caused by the over-constraint of structural leg support beam and filter plate under-constraint.


Sign in / Sign up

Export Citation Format

Share Document