Theoretically-Based Leidenfrost Point Model

2000 ◽  
Author(s):  
John D. Bernardin ◽  
Issam Mudawar

Abstract This study presents a theoretically-based model of the Leidenfrost point (LFP); the minimum liquid/solid interface temperature required to support film boiling on a smooth surface. The model is structured around bubble nucleation, growth, and merging criteria, as well as surface cavity size characterization. It is postulated that for liquid/solid interface temperatures at and above the LFP, a sufficient number of cavities (about 20%) are activated and the bubble growth rates are sufficiently fast that a continuous vapor layer is established nearly instantaneously between the liquid and the solid. The model is applicable to both pools of liquid and sessile droplets. The effect of surface cavity distribution on the LFP predicted by the model is verified for boiling on aluminum, nickel and silver surfaces, as well as on a liquid gallium surface. The model exhibits good agreement with experimental sessile droplet data for water, FC-72, and acetone. While the model was developed for smooth surfaces on which the roughness asperities are of the same magnitude as the cavity radii (0.1–1.0 μm), it is capable of predicting the boundary or limiting Leidenfrost temperature for rougher surfaces with good accuracy.

2002 ◽  
Vol 124 (5) ◽  
pp. 864-874 ◽  
Author(s):  
John D. Bernardin ◽  
Issam Mudawar

This study presents a new mechanistic model of the Leidenfrost point (LFP); the minimum liquid/solid interface temperature required to support film boiling on a smooth surface. The model is structured around bubble nucleation, growth, and merging criteria, as well as surface cavity size characterization. It is postulated that for liquid/solid interface temperatures at and above the LFP, a sufficient number of cavities (about 20 percent) are activated and the bubble growth rates are sufficiently fast that a continuous vapor layer is established nearly instantaneously between the liquid and the solid. The model is applicable to both pools of liquid and sessile droplets. The effect of surface cavity distribution on the LFP predicted by the model is verified for boiling on aluminum, nickel and silver surfaces, as well as on a liquid gallium surface. The model exhibits good agreement with experimental sessile droplet data for water, FC-72, and acetone. While the model was developed for smooth surfaces on which the roughness asperities are of the same magnitude as the cavity radii (0.1–1.0 μm), it is capable of predicting the boundary or limiting Leidenfrost temperature for rougher surfaces with good accuracy.


2004 ◽  
Vol 126 (2) ◽  
pp. 272-278 ◽  
Author(s):  
John D. Bernardin ◽  
Issam Mudawar

This study presents, for impinging droplets and sprays, a model of the Leidenfrost point (LFP); the minimum liquid/solid interface temperature required to support film boiling on a smooth surface. The present model is an extension of a previously developed sessile drop model, based on bubble nucleation, growth, and merging criteria, as well as surface cavity size characterization [3]. The basic concept of the model is that for liquid/solid interface temperatures at and above the LFP, a sufficient number of cavities are activated and the bubble growth rates are sufficiently fast that a continuous vapor layer is established nearly instantaneously between the liquid and the solid. For impinging droplets, the influence of the rise in interfacial pressure created by the impact of the droplet with the surface, must be accounted for in determining fluid properties at the liquid-solid interface. The effect of droplet impact velocity on the LFP predicted by the model is verified for single impinging droplets, streams of droplets, as well as sprays. While the model was developed for smooth surfaces on which the roughness asperities are of the same magnitude as the cavity radii (0.1–1.0 μm), it is capable of predicting the boundary or limiting Leidenfrost temperature for rougher surfaces with good accuracy.


2011 ◽  
Vol 325 ◽  
pp. 731-736
Author(s):  
Zheng Yi Jiang ◽  
Shu Jun Wang ◽  
Dong Bin Wei ◽  
Hei Jie Li ◽  
Hai Bo Xie ◽  
...  

In the paper, a crystal plasticity finite element method (CPFEM) model was developed based on ABAQUS to analyse the surface roughness transfer during metal manufacturing. The simulation result shows a good agreement with the experimental result in the flattening of surface asperity, and the surface roughness decreases significantly with an increase of reduction with considering friction effect. Lubrication can delay surface asperity flattening. The effect of surface roughness on produced metal defect (crack) was also studied, and the surface roughness affects the crack initiation significantly in cold strip rolling. In addition, the surface roughness variation along the metal plate width contributes to stress distribution and then inhibition of crack nucleation.


Author(s):  
Ruquan Liang ◽  
Satoru Komori

We present a numerical strategy for a propagating interface in multiphase flows using a level set method combined with a local mesh adaptative technique. We use the level set method to move the propagating interface in multiphase flows. We also use the local mesh adaptative technique to increase the grid resolution at regions near the propagating interface and additionally at the regions near points of high curvature with a minimum of additional expense. For illustration, we apply the adaptive coupled level set method to a collection of bubbles moving under passive transport. Good agreement has been obtained in the comparision of the numerical results for the collection of bubbles using an adaptative grid with those using a single grid. We also apply the adaptive coupled level set method to a droplet falling on a step where it is important to accurately model the effect of surface tension force and the motion of the free-surface, and the numerical results agree very closely with available data.


1983 ◽  
Vol 23 ◽  
Author(s):  
Philip H. Bucksbaum ◽  
Jeffrey Bokor

ABSTRACTDirect measurements of the liquid/solid interface veiocity have been made during both melt-in and regrowth for puised (20 psec) ultraviolet lasei irradiation or crystailine silicon. The regrowth velocity was 25 m/sec, independent or laser fluence. Regrowtn velocities of 50 to 100 m/sec are expected from heat diffusion calculations which neglect undercooling, whereas the inclusion of an appropriate undercooling curve brings the calculation into good agreement with the data. Tne liquid films produced were up to 40 nm thick and were fully amorphized on resoliaificaion.


2012 ◽  
Vol 502 ◽  
pp. 342-347 ◽  
Author(s):  
Wu Gui Jiang ◽  
Zheng Wei Wang

By using the two-dimensional quasicontinuum method, the nanocontact between Ni indenter and single crystal Cu substrate with a smooth or rough surface is simulated. The contact force varies in a nonlinear fashion with the increasing indenter displacement, including several force drops. The atomic-scale deformation mechanism in the Cu substrate during nanocontact process is monitored. Shockley partials, Lomer-Cottrel locks as well as twinning faults are observed at the force drops. The Lomer-Cottrel locks play an important role in smooth surface nanocontact process, and they insure that Cu substrate undergoes elastic deformation dominantly during nanocontact process. The contact forces calculated from the Maugis-Dugale (M-D) theory show a good agreement with those obtained by the QC simulation in the smooth surface nanocontact process. It must be noted that the M-D theory is no longer suitable to describe the rough surface nanocontact problem due to the severe plastic deformation in the asperities of the substrate when the characteristic size of roughness is on the order of the indenter depth.


2021 ◽  
Vol 69 (4) ◽  
Author(s):  
Jamal Choudhry ◽  
Andreas Almqvist ◽  
Roland Larsson

AbstractA multi-scale flash temperature model has been developed and validated against existing work. The core strength of the proposed model is that it can be adapted to predict flash contact temperatures occurring in various types of sliding systems. In this paper, it is used to investigate how different surface roughness parameters affect the flash temperatures. The results show that for decreasing Hurst exponents as well as increasing values of the high-frequency cut-off, the maximum flash temperature increases. It was also shown that the effect of surface roughness does not influence the average interface temperature. The model predictions were validated against data from an experiment conducted in a pin-on-disc machine. This also showed the importance of including a wear model when simulating flash temperature development in a sliding system.


2004 ◽  
Author(s):  
B. Xu ◽  
B. Q. Li ◽  
D. E. Stock

The results of an experimental investigation of natural convection driven flow of liquid gallium are presented. The gallium contained by a rectangular box with two opposite ends held at different temperatures and is subject to a uniform horizontal magnetic field. The objective of this study was to examine the damping effect of a magnetic field on the natural convection in a liquid metal. A hot film anemometry was used to measure the velocity profile and a thermocouple was used to measure the temperature field. The hot-film probe was calibrated over a narrow range of temperatures in a rotating container fill with liquid gallium. The velocity and temperature profiles are compared with previous numerical simulations and reasonably good agreement was found. The damping effect of the external magnetic field was observed in both the temperature and the velocity profiles and found to increase as the strength of the magnetic field increases.


Author(s):  
Xi Xi ◽  
Hong Liu ◽  
Chang Cai ◽  
Ming Jia ◽  
Weilong Zhang

Abstract The work attempts to analyze the performance of homogeneous nucleation by using the non-equilibrium thermodynamics theory and the classical nucleation theory. A nucleation rate graph was constructed under a wide range of operating temperature conditions. The results indicate that the superheat limit temperature (SLT) estimated by the modified homogeneous nucleation sub-model is in good agreement with the experimental results. The nucleation rate increases exponentially with the liquid temperature rise when the liquid temperature exceeds the SLT under atmospheric pressure. The superheated temperature needed to trigger the bubble nucleation decreases with the elevated ambient pressure.


Sign in / Sign up

Export Citation Format

Share Document