Superplasticity and Microstructural Evolution of a Large-Grained Mg Alloy

2000 ◽  
Author(s):  
Yi Liu ◽  
Kelly Shue ◽  
Xin Wu ◽  
Zhicheng Li ◽  
Yongbo Xu

Abstract Commercial Mg-3Al-Zn alloys (AZ31) with initial large grains (∼250μm) has been found superplastic at a strain rate of 0.5×10−2s−1 and at 350–500 C. The maximum elongation to failure of 170% at 500°C was obtained. Scanning electron microscope observations with electron back-scattering diffraction technique (SEM-EBSD) indicate that during deformation significant grain size reduction occurred, the average grain size reduced from about 250μm before deformation to about 50μm after deformation at temperatures from 300 C to 400°C, it reduced to about 100μm if deformed at above 400°C. The observed grain refinement at lower temperature and grain growth at higher temperature during the superplastic deformation is believed to be the result of the competing processes between dynamic recrystallization and dynamic grain growth, which are temperature and strain rate dependent. Transmission electron microscope (TEM) observations indicates that most of the grain boundaries are large-angle grain boundaries, though small amount of small-angle grain boundaries are also observed. The density of dislocations in the grains is very low in these superplasticlly deformed samples. It is evident that grain boundary played a role as the source and sink of the dislocation, being responsible for combined dislocation creep and diffusional creel. Therefore, the very large elongation obtained at the very high strain rates and high temperatures is attributed to dynamic dislocation hardening, recovery and recrystallization.

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Fangcheng Qin ◽  
Huiping Qi ◽  
Chongyu Liu ◽  
Haiquan Qi ◽  
Zhengbing Meng

The nonisothermal multipass deformation behavior of as-cast 42CrMo alloy was studied with declining temperature, constant pass strain, varying strain rate, and interval time. The stresses are used to develop the constitutive model. As the finishing temperature increases from 990°C to 1070°C, the stress decreases gradually and the softening effect increases, which results in a large grain size and inhomogeneous microstructure. The low angle grain boundaries transform into high angle grain boundaries through absorbing dislocations. The noticeable stress softening in a high strain rate is attributed to the thermal softening, dynamic recovery, and dynamic recrystallization. The thermal softening is no longer considered to be the main interpass softening mechanism at a low strain rate. The interval time has a negligible effect on the stress, but the significant changes in grain size and texture component are caused by the interpass softening. The average grain size is approximately 40 μm, and the distorted grain boundaries and small fine grains are found in the interval times of 0.5–5 s, implying the dynamic recovery and grain growth. The near {001}<110> and {110}<112> orientation exerts an important influence on the grain refinement.


2004 ◽  
Vol 467-470 ◽  
pp. 929-934 ◽  
Author(s):  
David San Martín ◽  
Francisca García Caballero ◽  
Carlos Capdevila ◽  
C. Carcía de Andrés

Grain growth is a thermally activated process in which the average grain size increases as temperature and time increases. The driving force for grain growth results from the decrease in the free energy associated with the reduction in total grain boundary energy. There are several known factors that influence the migration of grain boundaries such as second phase particles precipitated in the matrix and the solute elements segregated at grain boundaries. The austenite grain boundaries are revealed using the thermal etching method. Carbon extraction replicas were prepared to determine the composition and size of precipitates present in the matrix. In this work, the evolution of the average prior austenite grain size (PAGS) of a low carbon steel microalloyed with niobium is studied as a function of temperature and heating rate. Austenite grains show a two-stage growth. It has been found that as heating rate increases, the grain coarsening temperature (TGC) increases and the grain size at that temperature decreases. TGC temperature lies around 40-60°C below the temperature for complete dissolution of carbonitrides (TDISS).


2002 ◽  
Vol 35 ◽  
pp. 552-558 ◽  
Author(s):  
Jérôme Weiss ◽  
Jérôme Vidot ◽  
Michel Gay ◽  
Laurent Arnaud ◽  
Paul Duval ◽  
...  

AbstractWe present a detailed analysis of the microstructure in the shallow part (100–580m) of the European Project for Ice Coring in Antarctica (EPICA) ice core at Dome Concordia. In the Holocene ice, the average grain-size increases with depth. This is the normal grain-growth process driven by a reduction of the total grain-boundary energy. Deeper, associated with the Holocene–Last Glacial Maximum (LGM) climatic transition, a sharp decrease of the average grain-size is observed. to explain modifications to the microstructure with climatic change, we discuss the role of soluble and insoluble (microparticles) impurities in the grain-growth process of Antarctic ice, coupled with an analysis of the pinning of grain boundaries by microparticles. Our data indicate that high soluble impurity content does not necessarily imply a slowing-down of grain-growth kinetics, whereas the pinning of grain boundaries by dust particles located along the boundaries does explain modifications to the microstructure (small grain-sizes; change in grain-size distributions, etc.) observed in volcanic ash layers or dusty LGM ice.Moreover, classical mean-field models of grain-boundary pinning are in good quantitative agreement with the evolution of grain-size along the EPICA ice core. This suggests a major role for dust in the modification of shallow polar ice microstructure.


2020 ◽  
Vol 321 ◽  
pp. 04028
Author(s):  
Paranjayee Mandal ◽  
Ares Gomez-Gallegos ◽  
Diego Gonzalez ◽  
Hosam Elrakayby ◽  
Paul Blackwell

Even though TIMETAL-54M (Ti-5Al-4V-0.6Mo-0.4Fe or Ti54M) has been commercially available for over 10 years, further study of its superplastic properties is still required in order to assess its applicability within the aerospace industry as a potential replacement for other commercial titanium alloys such as Ti-6Al-4V (Ti64). Ti54M is expected to obtain superplastic characteristics at a lower temperature than Ti64 due to its lower beta-transus temperature. The superplastic forming (SPF) capability of alloys that can be formed at lower temperatures has always attracted the interest of industry as it reduces the grain growth and alpha-case formation, leading to longer life for costly high temperature resistant forming tools. In this work, the SPF characteristics of both Ti54M and Ti64 have been examined by conducting tensile tests according to the ASTM E2448 standard within a range of temperatures and strain values at a fixed strain rate of 1 × 10-4/S. A high strain rate sensitivity and uniform deformation at high strains are key indicators in selecting the optimum superplastic temperature. This was observed at 815˚C and 925˚C for Ti54M and Ti64 respectively. The tensile samples were water quenched to freeze their respective microstructure evolution following superplastic deformation and SEM images were captured for grain size and volume fraction of alpha-phase analyses. A slightly higher alpha-grain growth rate was observed during superplastic deformation of Ti64. The initial fine-grain microstructure of Ti54M (~1.6 micron) resulted in a final microstructure with an average grain size of ~3.4 micron and optimum the alpha/beta ratio. Both the fine-grained microstructure and increased amount of beta-volume fraction promotes the superplastic behaviour of Ti54M by grain boundary sliding (GBS). Thus superplastic properties were observed for Ti54M at a lower temperature (~100˚C) than for Ti64.


2012 ◽  
Vol 560-561 ◽  
pp. 152-155 ◽  
Author(s):  
Kalale Raghavendra Rao Phaneesh ◽  
Anirudh Bhat ◽  
Gautam Mukherjee ◽  
Kishore T. Kashyap

2D Potts model Monte Carlo simulation was carried out on a square lattice to investigate the effects of varying the size of second phase particles on the Zener limit of grain growth, in two-phase polycrystals. Simulations were carried out on a 1000^2 size matrix with Q-state of 64, dispersed with second phase particles of various sizes and surface fractions, and run to stagnation. Different grain growth parameters such as mean grain size, largest grain size, fraction of second phase particles lying on grain boundaries, etc., were computed for the pinned microstructures. The pinned average grain size or the Zener limit increased with increase in particle size, as per the classic Smith-Zener equation. The Zener limit scaled inversely with the square root of the particle fraction for all particle sizes, while it scaled exponentially with the fraction of second phase particles lying on the grain boundaries (ϕ), for all particle sizes tested.


2007 ◽  
Vol 345-346 ◽  
pp. 57-60 ◽  
Author(s):  
Jong Won Yoon ◽  
Nam Yong Kim ◽  
Jeoung Han Kim ◽  
Jong Taek Yeom ◽  
Nho Kwang Park

Recrystallization and grain growth behavior of alloy 718 casting were investigated to obtain homogeneous microstructure during hot forging. For this purpose, compression tests were carried out for cylindrical specimens at the temperature range of 1000 to 1150°C and the strain rate of 10-1 and 10sec-1. The dynamic recrystallization behavior caused by the hot compression was investigated in terms of the recrystallized area fraction and average grain size. Reheating was followed to the hot compressed samples at the temperature range of 1050 to 1150°C for 100, 600 and 1800sec, and the static recrystallization behavior caused by the reheating was also investigated. As hot deformation temperature increased from 1000 to 1150°C, both the area fraction and average grain size of dynamically recrystallized grains increased. When higher strain rate of 10 sec-1 was used, the area fraction of dynamically recrystallized grains increased substantially, but the average grain size was not affected. When reheating the hot compressed samples at 1050°C for 100, 600 and 1800sec, respectively, microstructural change including grain growth was not noticed. On the other hand, when reheating the samples at higher temperatures, 1100°C and 1150°C, both the area fraction and the average grain size of the statically recrystallized grains increased considerably as the holding time increased from 100 to 1800sec.


2008 ◽  
Vol 584-586 ◽  
pp. 164-169 ◽  
Author(s):  
Krystof Turba ◽  
Premysl Malek ◽  
Edgar F. Rauch ◽  
Miroslav Cieslar

Equal-channel angular pressing (ECAP) at 443 K was used to introduce an ultra-fine grained (UFG) microstructure to a Zr and Sc modified 7075 aluminum alloy. Using the methods of TEM and EBSD, an average grain size of 0.6 1m was recorded after the pressing. The UFG microstructure remained very stable up to the temperature of 723 K, where the material exhibited high strain rate superplasticity (HSRSP) with elongations to failure of 610 % and 410 % at initial strain rates of 6.4 x 10-2 s-1 and 1 x 10-1 s-1, respectively. A strain rate sensitivity parameter m in the vicinity of 0.45 was observed at temperatures as high as 773 K. At this temperature, the material still reached an elongation to failure of 430 % at 2 x 10-2 s-1. These results confirm the stabilizing effect of the Zr and Sc additions on the UFG microstructure in a 7XXX series aluminum alloy produced by severe plastic deformation.


2016 ◽  
Vol 838-839 ◽  
pp. 404-409
Author(s):  
Roman Mishnev ◽  
Iaroslava Shakhova ◽  
Andrey Belyakov ◽  
Rustam Kaibyshev

A Cu-0.87%Cr-0.06%Zr alloy was subjected to equal channel angular pressing (ECAP) at a temperature of 400 °C up to a total strain of ~ 12. This processing produced ultra-fine grained (UFG) structure with an average grain size of 0.6 μm and an average dislocation density of ~4×1014 m-2. Tensile tests were carried out in the temperature interval 450 – 650 °C at strain rates ranging from 2.8´10-4 to 0.55 s-1. The alloy exhibits superplastic behavior in the temperature interval 550 – 600 °C at strain rate over 5.5´10-3 s-1. The highest elongation-to-failure of ~300% was obtained at a temperature of 575 °C and a strain rate of 2.8´10-3 s-1 with the corresponding strain rate sensitivity of 0.32. It was shown the superplastic flow at the optimum conditions leads to limited grain growth in the gauge section. The grain size increases from 0.6 μm to 0.87 μm after testing, while dislocation density decreases insignificantly to ~1014 m-2.


2013 ◽  
Vol 591 ◽  
pp. 54-60
Author(s):  
Xiu Li Fu ◽  
Yan Xu Zang ◽  
Zhi Jian Peng

The effect of WO3doping on microstructural and electrical properties of ZnO-Pr6O11based varistor materials was investigated. The doped WO3plays a role of inhibitor in ZnO grain growth, resulting in decreased average grain size from 2.68 to 1.68 μm with increasing doping level of WO3from 0 to 0.5 mol%. When the doping level of WO3was lower than 0.05 mol%, the nonlinear current-voltage characteristics of the obtained varistors could be improved significantly with increasing amount of WO3doped. But when the doping level of WO3became higher, their nonlinear current-voltage performance would be dramatically deteriorated when more WO3was doped. The optimum nonlinear coefficient, varistor voltage, and leakage current of the samples were about 13.71, 710 V/mm and 13 μA/cm2, respectively, when the doping level of WO3was in the range from 0.03 to 0.05 mol%.


Sign in / Sign up

Export Citation Format

Share Document