Measurement Scheme Synthesis in Multi-Station Machining Systems

Author(s):  
Dragan Djurdjanovic ◽  
Jun Ni

The selection of measurements in multi-station machining systems is currently not a systematic process and it involves expert human intervention. In this paper, the recently introduced formal methods for quantitative characterization of measurement schemes in multi-station machining systems are employed in devising systematic measurement scheme synthesis procedures. The newly proposed synthesis procedures were applied in devising measurement schemes in the process used to machine a car engine cylinder head. It was observed that the measurement scheme synthesis procedure based on a genetic algorithm robustly outperformed the synthesis procedures based on the heuristics of successive measurement removal.

2004 ◽  
Vol 126 (1) ◽  
pp. 178-188 ◽  
Author(s):  
Dragan Djurdjanovic ◽  
Jun Ni

Different sets of measurements carry different amounts of information about the root causes of quality problems in machining. The selection of measurements in multi-station machining systems is currently a slow and error-prone process based on expert human knowledge. In this paper, we propose systematic procedures for synthesizing measurement schemes that carry the most information about the root causes of dimensional machining errors. The amount of root cause information conveyed by a given set of measurements was assessed using the recently introduced formal methods for quantitative characterization of measurement schemes in multi-station machining systems. The newly proposed measurement scheme synthesis procedures were applied to devising measurement schemes in an automotive cylinder head machining process. It was observed that the measurement scheme synthesis procedure based on a genetic algorithm robustly outperformed the synthesis procedures based on the heuristics of successive measurement removal.


Author(s):  
Humera Farooq ◽  
Nordin Zakaria ◽  
Muhammad Tariq Siddique

The visualization of search space makes it easy to understand the behavior of the Genetic Algorithm (GA). The authors propose a novel way for representation of multidimensional search space of the GA using 2-D graph. This is carried out based on the gene values of the current generation, and human intervention is only required after several generations. The main contribution of this research is to propose an approach to visualize the GA search data and improve the searching process of the GA with human’s intention in different generations. Besides the selection of best individual or parents for the next generation, interference of human is required to propose a new individual in the search space. Active human intervention leads to a faster searching, resulting in less user fatigue. The experiments were carried out by evolving the parameters to derive the rules for a Parametric L-System. These rules are then used to model the growth process of branching structures in 3-D space. The experiments were conducted to evaluate the ability of the proposed approach to converge to optimized solution as compared to the Simple Genetic Algorithm (SGA).


2019 ◽  
Vol 13 (1) ◽  
pp. 4704-4717
Author(s):  
Mohd Razali Hanipah ◽  
Shahin Mansor ◽  
M. R. M. Akramin ◽  
Akhtar Razul Razali

Automotive valve springs occupy substantial space in the cylinder head of an internal combustion engine. In this paper, the design and analyses of a flat spring concept, known as flexure bearing are presented. Further, design approach, characteristics and parametric characterizations of a single-piece flexure bearing concept are outlined. Finite element analysis was used in examining the flexure bearing strength for different designs, materials and thicknesses. The results show that the maximum stress values are independent of the material types when the number of arm is three and above. The strain values are limited to less than 1% for all materials when the thickness is more than 1mm.  The results have provided characteristics for future selection of the flexure bearing in relation to the intended axial displacement.    


2014 ◽  
Vol 590 ◽  
pp. 390-393 ◽  
Author(s):  
Xue Liang Zhang ◽  
Yun Jie Xu

Fault diagnosis of Diesel engine cylinder head is very complex, so it is difficult to use the mathematical model to describe their faults. In this study, support vector machine trained by genetic algorithm based on high frequency demodulation analysis is proposed to fault diagnosis of Diesel engine cylinder head. Genetic algorithm is used to determine training parameters of support vector machine in this model, which can optimize the support vector machine (SVM) an intelligent diagnostic model. The performance of the GSVM system proposed in this study is evaluated by Diesel engine cylinder head in the wood-wool production device. The application to fault diagnosis for diesel engine shows the effectiveness o f the method.


Author(s):  
L.E. Murr ◽  
A.B. Draper

The industrial characterization of the machinability of metals and alloys has always been a very arbitrarily defined property, subject to the selection of various reference or test materials; and the adoption of rather naive and misleading interpretations and standards. However, it seems reasonable to assume that with the present state of knowledge of materials properties, and the current theories of solid state physics, more basic guidelines for machinability characterization might be established on the basis of the residual machined microstructures. This approach was originally pursued by Draper; and our presentation here will simply reflect an exposition and extension of this research.The technique consists initially in the production of machined chips of a desired test material on a horizontal milling machine with the workpiece (specimen) mounted on a rotary table vice. A single cut of a specified depth is taken from the workpiece (0.25 in. wide) each at a new tool location.


2012 ◽  
Vol 57 (3) ◽  
pp. 829-835 ◽  
Author(s):  
Z. Głowacz ◽  
J. Kozik

The paper describes a procedure for automatic selection of symptoms accompanying the break in the synchronous motor armature winding coils. This procedure, called the feature selection, leads to choosing from a full set of features describing the problem, such a subset that would allow the best distinguishing between healthy and damaged states. As the features the spectra components amplitudes of the motor current signals were used. The full spectra of current signals are considered as the multidimensional feature spaces and their subspaces are tested. Particular subspaces are chosen with the aid of genetic algorithm and their goodness is tested using Mahalanobis distance measure. The algorithm searches for such a subspaces for which this distance is the greatest. The algorithm is very efficient and, as it was confirmed by research, leads to good results. The proposed technique is successfully applied in many other fields of science and technology, including medical diagnostics.


Sign in / Sign up

Export Citation Format

Share Document