Parallel Molecular Dynamics Code Validation Through Bulk Silicon Thermal Conductivity Calculations

Author(s):  
Carlos J. Gomes ◽  
Marcela Madrid ◽  
Cristina H. Amon

We have implemented a parallel molecular dynamics algorithm, which incorporates the Stillinger-Weber interatomic potential. The code was parallelized using a ghost cell atomic division approach, ensuring scaling with the number of processors and a significant increase in speed with respect to the serial version. The methodology is validated by computing the thermal conductivity and phonon frequency spectra of bulk silicon single crystals for different domain sizes at 1000K. The predicted thermal conductivities are consistent with the experimental value at that temperature. In addition, the phonon frequency spectra capture the properties expected from the dispersion relations for silicon.

2021 ◽  
Vol 129 (15) ◽  
pp. 155105
Author(s):  
Fernan Saiz ◽  
Yenal Karaaslan ◽  
Riccardo Rurali ◽  
Cem Sevik

Author(s):  
Keivan Esfarjani ◽  
Gang Chen ◽  
Asegun Henry

Based on first-principles density-functional calculations, we have developed and tested a force-field for silicon, which can be used for molecular dynamics simulations and the calculation of its thermal properties. This force field uses the exact Taylor expansion of the total energy about the equilibrium positions up to 4th order. In this sense, it becomes systematically exact for small enough displacements, and can reproduce the thermodynamic properties of Si with high fidelity. Having the harmonic force constants, one can easily calculate the phonon spectrum of this system. The cubic force constants, on the other hand, will allow us to compute phonon lifetimes and scattering rates. Results on equilibrium Green-Kubo molecular dynamics simulations of thermal conductivity as well as an alternative calculation of the latter based on the relaxation-time approximation will be reported. The accuracy and ease of computation of the lattice thermal conductivity using these methods will be compared. This approach paves the way for the construction of accurate bulk interatomic potentials database, from which lattice dynamics and thermal properties can be calculated and used in larger scale simulation methods such as Monte Carlo.


1995 ◽  
Vol 408 ◽  
Author(s):  
Andrey Omeltchenko ◽  
Aiichiro Nakano ◽  
Rajiv K. Kalia ◽  
Priya Vashishta

AbstractMolecular dynamics simulations are performed to investigate structure, mechanical properties, and thermal transport in amorphous silicon nitride under uniform dilation. As the density is lowered, we observe the formation of pores below ρ = 2.6 g/cc and at 2.0 g/cc the largest pore percolates through the entire system. Effects of porosity on elastic constants, phonons and thermal conductivity are investigated. Thermal conductivity and Young's modulus are found to scale as ρ1.5 and ρ3.6, respectively.


2009 ◽  
Vol 132 (1) ◽  
Author(s):  
Javier V. Goicochea ◽  
Marcela Madrid ◽  
Cristina Amon

Molecular dynamics simulations are performed to estimate acoustical and optical phonon relaxation times, dispersion relations, group velocities, and specific heat of silicon needed to solve the Boltzmann transport equation (BTE) at 300 K and 1000 K. The relaxation times are calculated from the temporal decay of the autocorrelation function of the fluctuation of total energy of each normal mode in the ⟨100⟩ family of directions, where the total energy of each mode is obtained from the normal mode decomposition of the motion of the silicon atoms over a period of time. Additionally, silicon dispersion relations are directly determined from the equipartition theorem obtained from the normal mode decomposition. The impact of the anharmonic nature of the potential energy function on the thermal expansion of the crystal is determined by computing the lattice parameter at the cited temperatures using a NPT (i.e., constant number of atoms, pressure, and temperature) ensemble, and are compared with experimental values reported in the literature and with those computed analytically using the quasiharmonic approximation. The dependence of the relaxation times with respect to the frequency is identified with two functions that follow the functional form of the relaxation time expressions reported in the literature. From these functions a simplified version of relaxation times for each normal mode is extracted. Properties, such as group and phase velocities, thermal conductivity, and mean free path, needed to further develop a methodology for the thermal analysis of electronic devices (i.e., from nano- to macroscales) are determined once the relaxation times and dispersion relations are obtained. The thermal properties are validated by comparing the BTE-based thermal conductivity against the predictions obtained from the Green–Kubo method. It is found that the relaxation times closely resemble the ones obtained from perturbation theory at high temperatures; the contribution to the thermal conductivity of the transverse acoustic, longitudinal acoustic, and longitudinal optical modes being approximately 30%, 60%, and 10%, respectively, and the contribution of the transverse optical mode negligible.


2020 ◽  
Vol 9 (1) ◽  
pp. 11-25
Author(s):  
Jude S. Alexander ◽  
Christopher Maxwell ◽  
Jeremy Pencer ◽  
Mouna Saoudi

The ready availability of codes such as LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator) for molecular dynamics simulations has opened up the realm of atomistic modelling to novice code users with an interest in computational materials modelling but who lack the appropriate theoretical or computational background. As such, there is significant risk of the “user effect” having a negative impact on the quality of results obtained using such codes. Here, we present a “how-to” procedure for equilibrium molecular dynamics-based nuclear fuel thermal conductivity calculations using the Green–Kubo method with an interatomic potential developed by Cooper et al. [ 1 ]. The various steps of the simulation are identified and explained, along with criteria to assess the quality of the intermediate and final results, discussion of some problems that can arise during a simulation, and some inherent limitations of the method. Calculated thermal conductivities for UO2 and ThO2 will be compared with the available experimental data and also with similar thermal conductivity calculations using nonequilibrium molecular dynamics, reported in the open literature.


Author(s):  
Jose´ A. Pascual-Gutie´rrez ◽  
Jayathi Y. Murthy ◽  
Raymond Viskanta

Perturbation theory is used to compute the strength of three-phonon and isotope scattering mechanisms in silicon using the Environment-Dependent Interatomic Potential (EDIP) without resorting to any parameter-fitting. A detailed methodology to accurately find three-phonon processes satisfying energy- and momentum-conservation rules is described. Bulk silicon thermal conductivity values are computed across a range of temperatures and shown to match experimental data well. It is found that about two-thirds of the heat transport in bulk silicon may be attributed to transverse acoustic modes. Effective relaxation times and mean free paths are computed in order to provide a more complete picture of the detailed transport mechanisms and for use with carrier transport models based on the Boltzmann transport equation.


Author(s):  
Lin Sun ◽  
Jayathi Y. Murthy

In this paper, molecular dynamics (MD) simulation is employed to compute thermal conductivity, dispersion curves and single mode relaxation times for bulk silicon. A newly-developed environment-dependent interatomic potential (EDIP) is used in our simulations. Using the Green-Kubo method, simulations of bulk silicon thermal conductivity are conducted using 216 to 4096 atoms. The effect of domain size is explored for different temperatures. Thermal conductivity predictions are found to converge to a bulk value for simulations containing 1000 atoms or more, even though the domain is much smaller than the phonon mean free path. A domain-size independent thermal conductivity is computed for temperatures ranging from 300 K to 1000 K and is shown to compare reasonably well with experimental data without the need for correction factors. The MD results are analyzed to obtain phonon dispersion curves along the [100] direction. Dispersion curves are also obtained using EDIP under a harmonic approximation and the classical dynamical matrix approach. The two sets of curves agree reasonably well. Furthermore, single mode phonon relaxation times are computed from the MD simulations. The trend can be curve-fit by third or fourth-order polynomials.


Volume 4 ◽  
2004 ◽  
Author(s):  
Xinwei Wang ◽  
Cecil Lawrence

In this work, nonequilibrium molecular dynamics is used to predict the thermal conductivity of nanoscale thin silicon films in the thickness direction. Recently developed environment-dependent interatomic potential for silicon, which offers considerable improvement over the more common Stillinger-Weber potential, is used. Silicon films of various thicknesses are modeled to establish the variation of thermal conductivity with the film thickness. The obtained relationship between the thermal conductivity and the film thickness is compared with the results of the Lattice Boltzmann method, and sound agreement is observed.


Sign in / Sign up

Export Citation Format

Share Document