Free Vibration of a Thin-Film Inflated Torus

Author(s):  
L. Moxey ◽  
H. Hamidzadeh

In this paper an overview of the mathematical model for an inflated thin-film toroidal structure is provided. In particular, attention has been confined to determine the free vibrations of inflated circular toroidal members. The provided solution is based on an improved set of equations of motion for uniform membrane. From which the dependence of natural frequencies on material properties, dimension, mode of vibration, and the inner pressure can be investigated. The validity of the developed models was verified by comparing some of the computed results with those available for special cases. Numerical results for natural frequencies and mode shapes are provided for a specific thin-film inflated torus.

1999 ◽  
Author(s):  
S. Park ◽  
J. W. Lee ◽  
Y. Youm ◽  
W. K. Chung

Abstract In this paper, the mathematical model of a Bernoulli-Euler cantilever beam fixed on a moving cart and carrying an intermediate lumped mass is derived. The equations of motion of the beam-mass-cart system is analyzed utilizing unconstrained modal analysis, and a unified frequency equation which can be generally applied to this kind of system is obtained. The change of natural frequencies and mode shapes with respect to the change of the mass ratios of the beam, the lumped mass and the cart and to the position of the lumped mass is investigated. The open-loop responses of the system by arbitrary forcing function are also obtained through numerical simulations.


2014 ◽  
Vol 2 (1) ◽  
Author(s):  
Erasmo Viola ◽  
Marco Miniaci ◽  
Nicholas Fantuzzi ◽  
Alessandro Marzani

AbstractThis paper investigates the in-plane free vibrations of multi-stepped and multi-damaged parabolic arches, for various boundary conditions. The axial extension, transverse shear deformation and rotatory inertia effects are taken into account. The constitutive equations relating the stress resultants to the corresponding deformation components refer to an isotropic and linear elastic material. Starting from the kinematic hypothesis for the in-plane displacement of the shear-deformable arch, the equations of motion are deduced by using Hamilton’s principle. Natural frequencies and mode shapes are computed using the Generalized Differential Quadrature (GDQ) method. The variable radius of curvature along the axis of the parabolic arch requires, compared to the circular arch, a more complex formulation and numerical implementation of the motion equations as well as the external and internal boundary conditions. Each damage is modelled as a combination of one rotational and two translational elastic springs. A parametric study is performed to illustrate the influence of the damage parameters on the natural frequencies of parabolic arches for different boundary conditions and cross-sections with localizeddamage.Results for the circular arch, derived from the proposed parabolic model with the derivatives of some parameters set to zero, agree well with those published over the past years.


Author(s):  
H R Hamidzadeh ◽  
L Moxey

The free vibrations of circular and elliptical thin-film lens are investigated. In particular, linear closed-form solutions for free vibrations of these structures were achieved and modal analysis was performed. The vibration response of the thin-film membranes were mathematically modelled using the Mathieu equation. Numerical results for various nodal diameters were computed. For the limited case, when an elliptical lens becomes circular, an excellent comparison was established with the available analytical solution. Experimental analyses were conducted to determine the effects of various parameters, such as material properties, membrane pre-strain rate, and the geometry, on natural frequency and mode shapes of these structures. The comparison verified the adequacy of linear solutions to predict the dynamic response of thin-film lenses.


Author(s):  
Tyler Kellar ◽  
Pezhman Hassanpour

This paper addresses the dynamic characteristics of a beam with a particular elastic boundary condition. In this elastic boundary condition, the lateral and angular displacements of the beam are coupled through the elastic constraints. The dynamic characteristic, namely natural frequencies and mode shapes of vibrations are frequently encountered in the design and modeling of resonant micro-structures. The governing equations of motion of the beam is derived using Euler-Bernoulli beam theory considering the elastic coupling between the transverse and rotational displacements of the beam’s end. The characteristic equation for the natural frequencies and mode shapes of vibration is derived by applying the method of separation of variables to the governing partial differential equation of motion. The natural frequencies and mode shapes of the system are derived for various combinations of compliance values of the elastic support and are compared with those of several special cases, namely clamped-free, clamped-guided, clamped-pinned and clamped-clamped beams.


1995 ◽  
Vol 48 (11S) ◽  
pp. S84-S89
Author(s):  
V. C. M. de Souza ◽  
J. M. F. Saraiva

The free vibrations of conical shells, having two open rigidly clamped edges, are investigated by using a variational development of the equations of motion based upon the Classical Shell Theory, and results are compared with those obtained by using Donnell’s approximation in the development of these equations. Through suitable examples, the validity of Donnell’s approximation to compute natural frequencies and mode-shapes of conical shells is shown.


2020 ◽  
Vol 25 (2) ◽  
pp. 29
Author(s):  
Desmond Adair ◽  
Aigul Nagimova ◽  
Martin Jaeger

The vibration characteristics of a nonuniform, flexible and free-flying slender rocket experiencing constant thrust is investigated. The rocket is idealized as a classic nonuniform beam with a constant one-dimensional follower force and with free-free boundary conditions. The equations of motion are derived by applying the extended Hamilton’s principle for non-conservative systems. Natural frequencies and associated mode shapes of the rocket are determined using the relatively efficient and accurate Adomian modified decomposition method (AMDM) with the solutions obtained by solving a set of algebraic equations with only three unknown parameters. The method can easily be extended to obtain approximate solutions to vibration problems for any type of nonuniform beam.


2014 ◽  
Vol 592-594 ◽  
pp. 2041-2045 ◽  
Author(s):  
B. Naresh ◽  
A. Ananda Babu ◽  
P. Edwin Sudhagar ◽  
A. Anisa Thaslim ◽  
R. Vasudevan

In this study, free vibration responses of a carbon nanotube reinforced composite beam are investigated. The governing differential equations of motion of a carbon nanotube (CNT) reinforced composite beam are presented in finite element formulation. The validity of the developed formulation is demonstrated by comparing the natural frequencies evaluated using present FEM with those of available literature. Various parametric studies are also performed to investigate the effect of aspect ratio and percentage of CNT content and boundary conditions on natural frequencies and mode shapes of a carbon nanotube reinforced composite beam. It is shown that the addition of carbon nanotube in fiber reinforced composite beam increases the stiffness of the structure and consequently increases the natural frequencies and alter the mode shapes.


2021 ◽  
Author(s):  
Ishan Ali Khan

Since their discovery, immense attention has been given to carbon nanotubes (CNTs), due to their exceptional thermal, electronic and mechanical properties and, therefore, the wide range of applications in which they are, or can be potentially, employed. Hence, it is important that all the properties of carbon nanotubes are studied extensively. This thesis studies the vibrational frequencies of double-walled and triple-walled CNTs, with and without an elastic medium surrounding them, by using Finite Element Method (FEM) and Dynamic Stiffness Matrix (DSM) formulations, considering them as Euler-Bernoulli beams coupled with van der Waals interaction forces. For FEM modelling, the linear eigenvalue problem is obtained using Galerkin weighted residual approach. The natural frequencies and mode shapes are derived from eigenvalues and eigenvectors, respectively. For DSM formulation of double-walled CNTs, a nonlinear eigenvalue problem is obtained by enforcing displacement and load end conditions to the exact solution of single equation achieved by combining the coupled governing equations. The natural frequencies are obtained using Wittrick-Williams algorithm. FEM formulation is also applied to both double and triple-walled CNTs modelled as nonlocal Euler-Bernoulli beam. The natural frequencies obtained for all the cases, are in agreement with the values provided in literature.


Author(s):  
Ladislav Rolník ◽  
Milan Naď

Abstract The contribution is mainly focused on research and development of structural modification of machine tools, lathes in particular. The main aim of the modification is to change the modal properties (mode shapes, natural frequencies) of the lathe tool. The main objective of the contribution will be to formulate, mathematical analyse and evaluate the proposed methods and procedures for structural modifications of the tool, represented by beam body. A modification of modal properties by insertion of beam cores into beam body is studied in this paper. In this paper, the effect of material properties and geometrical parameters of reinforcing cores on natural frequencies of beam body is presented. The implementation will bring benefit on machine productivity, decreasing the machine tool wear and in many cases it will lead to better conditions in the cutting process.


1996 ◽  
Vol 118 (2) ◽  
pp. 141-146 ◽  
Author(s):  
S. Abrate

While many advances were made in the analysis of composite structures, it is generally recognized that the design of composite structures must be studied further in order to take full advantage of the mechanical properties of these materials. This study is concerned with maximizing the fundamental natural frequency of triangular, symmetrically laminated composite plates. The natural frequencies and mode shapes of composite plates of general triangular planform are determined using the Rayleigh-Ritz method. The plate constitutive equations are written in terms of stiffness invariants and nondimensional lamination parameters. Point supports are introduced in the formulation using the method of Lagrange multipliers. This formulation allows studying the free vibration of a wide range of triangular composite plates with any support condition along the edges and point supports. The boundary conditions are enforced at a number of points along the boundary. The effects of geometry, material properties and lamination on the natural frequencies of the plate are investigated. With this stiffness invariant formulation, the effects of lamination are described by a finite number of parameters regardless of the number of plies in the laminate. We then determine the lay-up that will maximize the fundamental natural frequency of the plate. It is shown that the optimum design is relatively insensitive to the material properties for the commonly used material systems. Results are presented for several cases.


Sign in / Sign up

Export Citation Format

Share Document