scholarly journals A Review of Wave Rotor Technology and Its Applications

Author(s):  
Pezhman Akbari ◽  
Razi Nalim ◽  
Norbert Mu¨ller

The objective of this paper is to provide a succinct review of past and current research in developing wave rotor technology. This technology has shown unique capabilities to enhance the performance and operating characteristics of a variety of engines and machinery utilizing thermodynamic cycles. Although there have been numerous efforts in the past dealing with this novel concept, this technology is not yet widely used and barely known to engineers. Here, an attempt is made to summarize both the previously reported work in the literature and ongoing efforts around the world. The paper covers a wide range of wave rotor applications including the early attempts to use wave rotors, its successful commercialization as supercharges for car engines, research and development for gas turbine topping, and other developments. The review also pays close attention to more recent efforts: utilization of such devices in pressure-gain combustors, ultra-micro gas turbines, and water refrigeration systems, highlighting possible further efforts on this topic. Observations and lessons learnt from experimental studies, numerical simulations, analytical approaches, and other design and analysis tools are presented.

Author(s):  
Amir A. Kharazi ◽  
Pezhman Akbari ◽  
Norbert Mu¨ller

A number of technical challenges have often hindered the economical application of refrigeration cycles using water (R718) as refrigerant. The novel concept of condensing wave rotor provides a solution for performance improvement of R718 refrigeration cycles. The wave rotor implementation can increase efficiency and reduce the size and cost of R718 units. The condensing wave rotor employs pressurized water to pressurize, desuperheat, and condense the refrigerant vapor — all in one dynamic process. In this study, the underlying phenomena of flash evaporation, shock wave compression, desuperheating, and condensation inside the wave rotor channels are described in a wave and phase-change diagram. A computer program based on a thermodynamic model is generated to evaluate the performance of R718 baseline and wave-rotor-enhanced cycles. The detailed thermodynamic approach for the baseline and the modified cycles is described. The effect of some key parameters on the performance enhancement is demonstrated as an aid for optimization. A generated performance map summarizes the findings.


1969 ◽  
Vol 14 (6) ◽  
pp. 591-600 ◽  
Author(s):  
Conrad J. Schwarz

This paper is based on a review of the English language medical literature over the past 35 years on Indian Hemp, with direct reference being made to the more significant articles published during that time. The paucity of direct experimental observation is noted and the difficulties in experimental studies are highlighted by descriptions of the wide variations in the potency of Indian Hemp derivatives. Specific references are provided for the wide range of observations made in relation to acute and chronic physical and psychological effects, personal characteristics of the users and possible factors in causation. It is concluded that marihuana is a poorly defined intoxicant which varies in potency, deteriorates with time and whose chemical composition is largely unknown at present. There are wide variations in human response and the state of intoxication itself carries with it varying degrees of unpleasant physical and psychological experiences. The association between hashish and, to a lesser extent, marihuana and short-term and long-term complications is discussed in relation to complex variables, of which the drug is but one factor.


2018 ◽  
Vol 35 (2) ◽  
pp. 137-147 ◽  
Author(s):  
Antonios Fatsis

Abstract Wave rotors are rotating equipment designed to exchange energy between high and low enthalpy fluids by means of unsteady pressure waves. In turbomachinery, they can be used as topping devices to gas turbines aiming to improve performance. The integration of a wave rotor into a ground power unit is far more attractive than into an aeronautical application, since it is not accompanied by any inconvenience concerning the over-weight and extra dimensioning. Two are the most common types of ground industrial gas turbines: The one-shaft and the two-shaft engines. Cycle analysis for both types of gas turbine engines topped with a four-port wave rotor is calculated and their performance is compared to the performance of the baseline engine accordingly. It is concluded that important benefits are obtained in terms of specific work and specific fuel consumption, especially compared to baseline engines with low compressor pressure ratio and low turbine inlet temperature.


2004 ◽  
Vol 128 (1) ◽  
pp. 190-202 ◽  
Author(s):  
Pezhman Akbari ◽  
Razi Nalim ◽  
Norbert Müller

Significant performance enhancement of microturbines is predicted by implementing various wave-rotor-topping cycles. Five different advantageous cases are considered for implementation of a four-port wave rotor into two given baseline engines. In these thermodynamic analyses, the compressor and turbine pressure ratios and the turbine inlet temperatures are varied, according to the anticipated design objectives of the cases. Advantages and disadvantages are discussed. Comparison between the theoretic performance of wave-rotor-topped and baseline engines shows a performance enhancement up to 34%. General design maps are generated for the small gas turbines, showing the design space and optima for baseline and topped engines. Also, the impact of ambient temperature on the performance of both baseline and topped engines is investigated. It is shown that the wave-rotor-topped engines are less prone to performance degradation under hot-weather conditions than the baseline engines.


Author(s):  
Masoud Darbandi ◽  
Salman SafariMohsenabad ◽  
Shidvash Vakilipour

The analytical study of microchannels has been considered as a preliminary approach to alleviate the difficulties which are normally encountered in numerical and experimental studies. Among the analytical solutions, those with high robustness and low complexities are certainly more attractive. In this work, we present a theoretical approach to predict the temperature field in micro-Poiseuille channel flow with constant wall temperature. The use of power series method simplifies the solution in the current analytical approach. The current analytical derivations are examined for channels with both hot-wall and cold-wall conditions. The current solutions agree well with the numerical solutions for a wide range of Knudsen numbers. Contrary to the past analytical solutions and in spite of using a simple and robust approach, the current formulations predict the temperature field in the channel readily.


Author(s):  
A. Strojnik ◽  
J.W. Scholl ◽  
V. Bevc

The electron accelerator, as inserted between the electron source (injector) and the imaging column of the HVEM, is usually a strong lens and should be optimized in order to ensure high brightness over a wide range of accelerating voltages and illuminating conditions. This is especially true in the case of the STEM where the brightness directly determines the highest resolution attainable. In the past, the optical behavior of accelerators was usually determined for a particular configuration. During the development of the accelerator for the Arizona 1 MEV STEM, systematic investigation was made of the major optical properties for a variety of electrode configurations, number of stages N, accelerating voltages, 1 and 10 MEV, and a range of injection voltages ϕ0 = 1, 3, 10, 30, 100, 300 kV).


2020 ◽  
Vol 04 (04) ◽  
pp. 369-372
Author(s):  
Paul B. Romesser ◽  
Christopher H. Crane

AbstractEvasion of immune recognition is a hallmark of cancer that facilitates tumorigenesis, maintenance, and progression. Systemic immune activation can incite tumor recognition and stimulate potent antitumor responses. While the concept of antitumor immunity is not new, there is renewed interest in tumor immunology given the clinical success of immune modulators in a wide range of cancer subtypes over the past decade. One particularly interesting, yet exceedingly rare phenomenon, is the abscopal response, characterized by a potent systemic antitumor response following localized tumor irradiation presumably attributed to reactivation of antitumor immunity.


2020 ◽  
Vol 1 (2) ◽  
pp. 157-172
Author(s):  
Thomas Leitch

Building on Tzvetan Todorov's observation that the detective novel ‘contains not one but two stories: the story of the crime and the story of the investigation’, this essay argues that detective novels display a remarkably wide range of attitudes toward the several pasts they represent: the pasts of the crime, the community, the criminal, the detective, and public history. It traces a series of defining shifts in these attitudes through the evolution of five distinct subgenres of detective fiction: exploits of a Great Detective like Sherlock Holmes, Golden Age whodunits that pose as intellectual puzzles to be solved, hardboiled stories that invoke a distant past that the present both breaks with and echoes, police procedurals that unfold in an indefinitely extended present, and historical mysteries that nostalgically fetishize the past. It concludes with a brief consideration of genre readers’ own ambivalent phenomenological investment in the past, present, and future each detective story projects.


What did it mean to be a man in Scotland over the past nine centuries? Scotland, with its stereotypes of the kilted warrior and the industrial ‘hard man’, has long been characterised in masculine terms, but there has been little historical exploration of masculinity in a wider context. This interdisciplinary collection examines a diverse range of the multiple and changing forms of masculinities from the late eleventh to the late twentieth century, exploring the ways in which Scottish society through the ages defined expectations for men and their behaviour. How men reacted to those expectations is examined through sources such as documentary materials, medieval seals, romances, poetry, begging letters, police reports and court records, charity records, oral histories and personal correspondence. Focusing upon the wide range of activities and roles undertaken by men – work, fatherhood and play, violence and war, sex and commerce – the book also illustrates the range of masculinities that affected or were internalised by men. Together, the chapters illustrate some of the ways Scotland’s gender expectations have changed over the centuries and how, more generally, masculinities have informed the path of Scottish history


2015 ◽  
Vol 2 (2) ◽  
pp. 85-94
Author(s):  
Christina Landman

Dullstroom-Emnotweni is the highest town in South Africa. Cold and misty, it is situated in the eastern Highveld, halfway between the capital Pretoria/Tswane and the Mozambique border. Alongside the main road of the white town, 27 restaurants provide entertainment to tourists on their way to Mozambique or the Kruger National Park. The inhabitants of the black township, Sakhelwe, are remnants of the Southern Ndebele who have lost their land a century ago in wars against the whites. They are mainly dependent on employment as cleaners and waitresses in the still predominantly white town. Three white people from the white town and three black people from the township have been interviewed on their views whether democracy has brought changes to this society during the past 20 years. Answers cover a wide range of views. Gratitude is expressed that women are now safer and HIV treatment available. However, unemployment and poverty persist in a community that nevertheless shows resilience and feeds on hope. While the first part of this article relates the interviews, the final part identifies from them the discourses that keep the black and white communities from forming a group identity that is based on equality and human dignity as the values of democracy.


Sign in / Sign up

Export Citation Format

Share Document