Analytical Solution of Temperature Field in Micro-Poiseuille Flow With Constant Wall Temperature

Author(s):  
Masoud Darbandi ◽  
Salman SafariMohsenabad ◽  
Shidvash Vakilipour

The analytical study of microchannels has been considered as a preliminary approach to alleviate the difficulties which are normally encountered in numerical and experimental studies. Among the analytical solutions, those with high robustness and low complexities are certainly more attractive. In this work, we present a theoretical approach to predict the temperature field in micro-Poiseuille channel flow with constant wall temperature. The use of power series method simplifies the solution in the current analytical approach. The current analytical derivations are examined for channels with both hot-wall and cold-wall conditions. The current solutions agree well with the numerical solutions for a wide range of Knudsen numbers. Contrary to the past analytical solutions and in spite of using a simple and robust approach, the current formulations predict the temperature field in the channel readily.

2012 ◽  
Vol 23 (11) ◽  
pp. 1250072 ◽  
Author(s):  
ALI AMIRI-JAGHARGH ◽  
HAMID NIAZMAND ◽  
METIN RENKSIZBULUT

Fluid flow and heat transfer in the entrance region of rectangular microchannels of various aspect ratios are numerically investigated in the slip-flow regime with particular attention to thermal creep effects. Uniform inlet velocity and temperature profiles are prescribed in microchannels with constant wall temperature. An adiabatic section is also employed at the inlet of the channel in order to prevent unrealistically large axial temperature gradients due to the prescribed uniform inlet temperature as well as upstream diffusion associated with low Reynolds number flows. A control-volume technique is used to solve the Navier–Stokes and energy equations which are accompanied with appropriate velocity slip and temperature jump boundary conditions at the walls. Despite the constant wall temperature, axial and peripheral temperature gradients form in the gas layer adjacent to the wall due to temperature jump. The simultaneous effects of velocity slip, temperature jump and thermal creep on the flow and thermal patterns along with the key flow parameters are examined in detail for a wide range of cross-sectional aspect ratios, and Knudsen and Reynolds numbers. Present results indicate that thermal creep effects influence the flow field and the temperature distribution significantly in the early section of the channel.


1962 ◽  
Vol 2 (03) ◽  
pp. 225-256 ◽  
Author(s):  
G. Rowan ◽  
M.W. Clegg

Abstract The basic equations for the flow of gases, compressible liquids and incompressible liquids are derived and the full implications of linearising then discussed. Approximate solutions of these equations are obtained by introducing the concept of a disturbed zone around the well, which expands outwards into the reservoir as fluid is produced. Many important and well-established results are deduced in terms of simple functions rather than the infinite series, or numerical solutions normally associated with these problems. The wide range of application of this approach to transient radial flow problems is illustrated with many examples including; gravity drainage of depletion-type reservoirs; multiple well systems; well interference. Introduction A large number of problems concerning the flow of fluids in oil reservoirs have been solved by both analytical and numerical methods but in almost all cases these solutions have some disadvantages - the analytical ones usually involve rather complex functions (infinite series or infinite integrals) which are difficult to handle, and the numerical ones tend to mask the physical principles underlying the problem. It would seem appropriate, therefore, to try to find approximate analytical solutions to these problems without introducing any further appreciable errors, so that the physical nature of the problem is retained and solutions of comparable accuracy are obtained. One class of problems will be considered in this paper, namely, transient radial flow problems, and it will be shown that approximate analytical solutions of the equations governing radial flow can be obtained, and that these solutions yield comparable results to those calculated numerically and those obtained from "exact" solutions. It will also be shown that the restrictions imposed upon the dependent variable (pressure) are just those which have to be assumed in deriving the usual diffusion-type equations. The method was originally suggested by Guseinov, whopostulated a disturbed zone in the reservoir, the radius of which increases with time, andreplaced the time derivatives in the basic differential equation by its mean value in the disturbed zone. In this paper it is proposed to review the basic theory leading to the equations governing the flow of homogeneous fluids in porous media and to consider the full implications of the approximation introduced in linearising them. The Guseinov-type approximation will then be applied to these equations and the solutions for the flow of compressible and incompressible fluids, and gases in bounded and infinite reservoirs obtained. As an example of the application of this type of approximation, solutions to such problems as production from stratified reservoirs, radial permeability discontinuities; multiple-well systems, and well interference will be given. These solutions agree with many other published results, and in some cases they may be extended to more complex problems without the computational difficulties experienced by other authors. THEORY In order to review the basic theory from a fairly general standpoint it is proposed to limit the idealising assumptions to the minimum necessary for analytical convenience. The assumptions to be made are the following:That the flow is irrotational.That the formation is of constant thickness.Darcy's Law is valid.The formation is saturated with a single homogeneous fluid. SPEJ P. 225^


Author(s):  
Anisah Dasman ◽  
Abdul Rahman Mohd Kasim ◽  
Iskandar Waini ◽  
Najiyah Safwa Khashi’ie

This paper aims to present the numerical study of a dusty micropolar fluid due to a stretching sheet with constant wall temperature. Using the suitable similarity transformation, the governing partial differential equations for two-phase flows of the fluid and the dust particles are reduced to the form of ordinary differential equations. The ordinary differential equations are then numerically analysed using the bvp4c function in the Matlab software. The validity of present numerical results was checked by comparing them with the previous study. The results graphically show the numerical solutions of velocity, temperature and microrotation distributions for several values of the material parameter K, fluid-particle interaction parameter and Prandtl number for both fluid and dust phase. The effect of microrotation is investigated and analysed as well. It is found that the distributions are significantly influenced by the investigated parameters for both phases.


2013 ◽  
Vol 24 (08) ◽  
pp. 1350054 ◽  
Author(s):  
ALI AMIRI-JAGHARGH ◽  
HAMID NIAZMAND ◽  
METIN RENKSIZBULUT

The effects of thermal creep on the development of gaseous fluid flow and heat transfer in rectangular microchannels with constant wall temperature are investigated in the slip-flow regime. Thermal creep arises from tangential temperature gradients, which may be significant in the entrance region of channels, and affects the velocity and temperature fields particularly in low Reynolds number flows. In the present work, the Navier–Stokes and energy equations coupled with velocity-slip and temperature-jump conditions applied at the channel walls are solved numerically using a control-volume technique. Despite the constant wall temperature, tangential temperature gradients form in the gas layer adjacent to the wall due to the temperature-jump condition. The effects of slip/jump and thermal creep on the flow patterns and parameters are studied in detail for a wide range of channel aspect ratios and, Knudsen and Reynolds numbers. Furthermore, the effects of variable properties on velocity-slip and, friction and heat transfer coefficients are also examined.


Author(s):  
W. M. Adrugi ◽  
Y. S. Muzychka ◽  
K. Pope

In this paper, heat transfer enhancement using liquid-liquid Taylor flow is examined. The experiments are conducted in mini-scale tubes with constant wall temperature. The segmented flow is created using several fractions of low viscosity silicone oil (1 cSt) and water for a wide range of flow rates and segment lengths. The variety of liquids and flow rates change the Prandtl, Reynolds, and capillary numbers. The dimensionless mean wall flux and the dimensionless thermal flow length are used to analyze the experimental heat transfer data. The comparison shows the heat transfer rate for Taylor flow is higher than in single-phase flow. The heat transfer enhancement occurs due to internal circulation in the fluid segments.


Author(s):  
Kayode O. Olowe ◽  
Muthukrishnavellaisamy Kumarasamy

Contamination of surface water bodies by a wide range of organic and inorganic pollutants has been a serious problem in the recent time, these have an effect on human and aquatic animals. The water quality deterioration calls for regular monitoring of the water quality in order to maintain the health and sustainability of the aquatic ecosystems. Accurate monitoring of discharged pollutants into the rivers may be time taking and labour intensive. Water quality models are significant tools for simulating water quality and controlling the surface water pollution. The purpose of this study is to develop a simplified mathematical model which is hybrid cells in series model (HCIS) to simulate the spatial and temporal variation of nitrate concentration in natural rivers. The HCIS model was formulated to serve as an alternative method to the Fickian based models. Analytical solutions for the first order reaction kinetics of nitrate with the advection and dispersion process were derived using Laplace transformation technique. The model considered the effect of nitrate concentration at several points along the river downstream by considering the transformation of nitrite to nitrate through nitrification process. In addition, the uptake of nitrate by algae for its growth and conversion of nitrate to nitrogen gas due to denitrification process were considered. The HCIS-NO3 model was applied to uMgeni River, South Africa to investigate the nitrate concentration along the river. Furthermore, the quantitative measures based on the coefficient of determination (R2) and standard errors (SE) were used to evaluate the performance of the model. The result shows that the simulated values agreed with the measured values of nitrate concentration in the river which resulted in a R2 value of 0.72 and a low standard error. Analytical solutions of HCIS - NO3 model were compared with the numerical solutions of the Fickian based ADE model for hypothetical problems. Comparison of the responses indicates that the HCIS - NO3 and ADE- NO3 models were in good agreement. The study shows that the hybrid model is a simple and effective tool for simulating pollutant transport in natural rivers.


1969 ◽  
Vol 14 (6) ◽  
pp. 591-600 ◽  
Author(s):  
Conrad J. Schwarz

This paper is based on a review of the English language medical literature over the past 35 years on Indian Hemp, with direct reference being made to the more significant articles published during that time. The paucity of direct experimental observation is noted and the difficulties in experimental studies are highlighted by descriptions of the wide variations in the potency of Indian Hemp derivatives. Specific references are provided for the wide range of observations made in relation to acute and chronic physical and psychological effects, personal characteristics of the users and possible factors in causation. It is concluded that marihuana is a poorly defined intoxicant which varies in potency, deteriorates with time and whose chemical composition is largely unknown at present. There are wide variations in human response and the state of intoxication itself carries with it varying degrees of unpleasant physical and psychological experiences. The association between hashish and, to a lesser extent, marihuana and short-term and long-term complications is discussed in relation to complex variables, of which the drug is but one factor.


Author(s):  
Pezhman Akbari ◽  
Razi Nalim ◽  
Norbert Mu¨ller

The objective of this paper is to provide a succinct review of past and current research in developing wave rotor technology. This technology has shown unique capabilities to enhance the performance and operating characteristics of a variety of engines and machinery utilizing thermodynamic cycles. Although there have been numerous efforts in the past dealing with this novel concept, this technology is not yet widely used and barely known to engineers. Here, an attempt is made to summarize both the previously reported work in the literature and ongoing efforts around the world. The paper covers a wide range of wave rotor applications including the early attempts to use wave rotors, its successful commercialization as supercharges for car engines, research and development for gas turbine topping, and other developments. The review also pays close attention to more recent efforts: utilization of such devices in pressure-gain combustors, ultra-micro gas turbines, and water refrigeration systems, highlighting possible further efforts on this topic. Observations and lessons learnt from experimental studies, numerical simulations, analytical approaches, and other design and analysis tools are presented.


2019 ◽  
Vol 23 (1) ◽  
pp. 401-410 ◽  
Author(s):  
Uros Milovancevic ◽  
Branislav Jacimovic ◽  
Srbislav Genic ◽  
Faraj El-Sagier ◽  
Milena Otovic ◽  
...  

Thermoeconomic analysis of spiral heat exchanger is conducted. Different geometrical parameters, such as outer diameter, plate height, passage gap, etc. are used and varied in a wide range. Detailed thermal and total costs analyses were performed for two spiral heat exchanger with different process fluids (water and thermal oil) with temperature changes, while the wall temperature was kept constant (condensation). The results were shown graphically. It is determined that optimum values of number of entropy generation units correspond to minimum total annual cost. The optimal solution could be found in the recommended range of geometric sizes for defined inlet and outlet temperatures and process fluid-flow rate.


2021 ◽  
Author(s):  
Kamil Urbanowicz ◽  
Haixiao Jing ◽  
Anton Bergant ◽  
Michał Stosiak ◽  
Marek Lubecki

Abstract In this paper analytical formulas of water hammer known from the literature are simplified to the shortest possible mathematical form based on dimensionless parameters: dimensionless time, water hammer number, etc. Novel formulas are determined, for example for the flow velocity and wall shear stress in the Muto and Takahashi solution. A complete solution in the Laplace domain is presented and the problem of its inverse transformation is discussed. A series of comparative studies of analytical solutions with numerical solutions and the results of experimental research were carried out. The compared analytical solutions, taking into account the frequency-dependent nature of the hydraulic resistances, show very good agreement with the experimental results in a wide range of water hammer numbers, in particular when Wh ≤ 0.1. On the other hand, it turned out that the analytical model based on the quasi-steady friction in great detail simulates dynamic pressure response in systems characterized by a high value of the water hammer number Wh ≥ 0.5.


Sign in / Sign up

Export Citation Format

Share Document