Joining Dip-Pen Nanolithography and Microcontact Printing Into a Nanolithographic Process: From Engineering Design to Parallel Fabrication

Author(s):  
Matthew S. Johannes ◽  
Robert L. Clark ◽  
Daniel G. Cole

One nanomanufacturing concern is the precise, controlled deposition of materials at the nanoscale, commonly referred to as nanolithography. One promising technique, dip-pen nanolithography (DPN), can deposit a multitude of organic and inorganic materials. Simple and accurate, DPN uses an atomic force microscope (AFM) cantilever to deposit inks under ambient conditions. However, from a manufacturing perspective, DPN’s main drawback is its inherent serial nature. Another more promising technique is microcontact printing (μCP), which can repeatedly cover larger areas in a parallel fashion. As interest in nanomanufacturing processes increases, the demand for user-friendly, automated nanolithography processes become a priority. This paper presents a nanolithography process that begins with a design plan and ends with a manufactured product using a unique progression from design environment to serial nanolithographic technique to parallel nanolithographic technique. The process begins with the creation of a design template using conventional CAD software. The design template is then transformed into a vector signal that serves as input to the AFM used in the DPN process. A custom AFM has been designed for nanometer scale precision in three axes using real-time, digital feedback methodologies. Using the appropriate DPN ‘ink’ coated on the AFM cantilever, the design template is automatically reproduced onto the substrate, where the appropriate features are filled in with predetermined chemical functionalities. Specifically, alkanethiol chemistry is used as a resist for wet chemical etching of a gold substrate to create raised surface features which mimic the original design template. This substrate is used as a positive mask for the creation of polymeric stamps for μCP. These stamps are then used to create replicas of the original design template in a parallel fashion and qualitatively examined for their completeness and reproducibility.

Crystals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 584
Author(s):  
Shalendra Kumar ◽  
Faheem Ahmed ◽  
Nagih M. Shaalan ◽  
Osama Saber

Bio-inspired synthesis is a novel and attractive environmentally friendly route to generating inorganic materials. In this work, the preparation of CeO2 NPs using egg white and investigation of their antibacterial properties both in liquid and solid growth medium against Escherichia coli and Staphylococcus aureus bacteria were reported. The CeO2 nanoparticles were characterized using X-ray diffraction (XRD), Field emission transmission electron microscope (FETEM), UV-Vis, Raman, and antibacterial measurements. The results from XRD and TEM analysis showed that the prepared nanoparticles were a single phase in the nano regime (5–7 nm) with spherical shape and uniform size distribution. Optical properties reflected the characteristics peaks of CeO2 in the UV-Vis range with a bandgap ~2.80 eV. The antibacterial activity of the synthesized NPs was achieved under ambient conditions with different bacteria and the results showed that the properties were different for both the bacteria. The highest activity with an inhibition zone of about 22 mm against S. aureus was obtained as compared with the 19 mm zone of inhibition obtained with E.coli. This finding will be of major significance that indicates a possibility to develop CeO2 NPs as antibacterial agents against extensive microorganisms to control and prevent the spread and persistence of bacterial infections.


ACS Nano ◽  
2010 ◽  
Vol 4 (2) ◽  
pp. 1083-1091 ◽  
Author(s):  
Chien-Ching Wu ◽  
David N. Reinhoudt ◽  
Cees Otto ◽  
Aldrik H. Velders ◽  
Vinod Subramaniam

2006 ◽  
Vol 969 ◽  
Author(s):  
Franck Murray ◽  
François LeCornec ◽  
Serge Bardy ◽  
Catherine Bunel ◽  
Jan Verhoeven ◽  
...  

AbstractThe very large development of home and domestic electronic appliances as well as portable device has led the microelectronics industry to evolve in two complimentary directions : “More Moore” with the continuous race towards extremely small dimensions hence the development of SoCs (System on Chip) and more recently a new direction that we could name “More than Moore” with the integration of devices that were laying outside the chips and here the creation of SiPs (System in Package).These two approaches are not in competition one with the other: the paper will show some examples of integrated nano systems that use several SoCs.The technology we have developed is called Silicon Based System in Package. The first products using this technology are now in volume production and used mainly in the field of wireless communications.This new technology relies on four pillars. Passive integration is the first. Very efficient and high quality factor capacitors and inductors have been integrated, allowing the creation of complete modules including active devices, filters and decoupling capacitors. High-density MOS capacitors with 1-1000 nF capacitance, and as high values as 25-250+ nF/mm2 specific capacitance have been fabricated in macroporous Si-wafers, containing over 1 billion macropores. Typically an ESR less than 100 mÙ and an ESL less than 25 pH were found for capacitors over 10 nF. This novel concept is an important step forward in improving the stability of power-amplifier modules by replacing conventional SMD technology.Whereas generations with capacitors density of up to 100 nF/mm2 will be using “conventional” materials and structures, the next steps in the roadmap will call for new 3D structures and materials such as high-k dielectrics.The second element is advanced packaging. New technologies, such as the assembly of Silicon chips onto other Silicon chips, also named “double flip chip” have been developed. This has been made possible thanks to the combination of the most advanced microbumping and die placement techniques. In addition to a tremendous reduction of size (up to a factor of 10 to 20) these techniques have also brought a better repeatability of system performance.The third element has been the development of design tools that allow a seamless system design for engineers used to IC design tools and flows. Our Design Environment allows co design of multiple technologies chips and their integration in a single system. This IC-like Design Environment has contributed a lot to the adoption of the technology.Testing is the fourth element and is one of the economical enablers of the technology. The key words are: “known good die”, RF test, system test? Some innovative RF probing and full on wafer subsystem test will be shown. Even though efficient test is not vital for the technical feasibility of this system integration, it becomes very quickly one of the most important enablers, especially when we deal with very high volumes of production. The conclusion of the paper will be an open door to the future. Some innovations like the integration of light or even energy storage inside our SiPs will be presented.


Author(s):  
Rajneet Sodhi ◽  
Joshua U. Turner

Abstract This paper describes a strategy for representing tolerance information and assembly information in a feature-based design environment. The concept of designing with features is extended to incorporate the specification of tolerance information. This allows appropriate tolerancing strategies to be provided within the feature definitions themselves. Thus a closer connection is formed between features and the functional intent implicit in their use. The concept of designing with features is also extended to incorporate the specification of assembly information, through the use of assembly features which provide a high-level user interface for the creation and modeling of assemblies, and which handle the identification and creation of mating relations between components. Several examples of component and assembly design using this extended feature-based approach are presented.


1998 ◽  
Vol 4 (S2) ◽  
pp. 888-889
Author(s):  
H. G. Craighead ◽  
R. C. Davis ◽  
M. Foquet ◽  
M. Isaacson ◽  
C. James ◽  
...  

The technologies of nanofabrication as applied to inorganic materials and substrates are advanced and continue to develop. These sophisticated processes enable the formation of complex electronic, optical and mechanical devices with feature sizes down to tens of nanometers. Adaptation of these types of processes to surface chemical patterning and topographical patterning provides a new set of experimental tools for investigating biological systems and realizing sensors and devices that require the interaction of biological systems and fluids with inorganic materials and surfaces.In this talk we discuss methods of pattering self assembled monolayers, proteins and antibodies on silicon and glass surfaces by lithography and microcontact printing. This is of utility in a variety of experiments in cell-surface interactions and in sensor devices. In certain types of devices the manipulation of fluids and sieving of molecules is a critical function such as in DNA sequencing6 by electrophoretic separation.


2005 ◽  
Vol 11 (13) ◽  
pp. 3988-3996 ◽  
Author(s):  
Christiaan M. Bruinink ◽  
Christian A. Nijhuis ◽  
Mária Péter ◽  
Barbara Dordi ◽  
Olga Crespo-Biel ◽  
...  

Author(s):  
Frank Hoisl ◽  
Kristina Shea

AbstractSpatial grammars are rule based, generative systems for the specification of formal languages. Set and shape grammar formulations of spatial grammars enable the definition of spatial design languages and the creation of alternative designs. Since the introduction of the underlying formalism, they have been successfully applied to different domains including visual arts, architecture, and engineering. Although many spatial grammars exist on paper, only a few, limited spatial grammar systems have been computationally implemented to date; this is especially true for three-dimensional (3-D) systems. Most spatial grammars are hard-coded, that is, once implemented, the vocabulary and rules cannot be changed without reprogramming. This article presents a new approach and prototype implementation for a 3-D spatial grammar interpreter that enables interactive, visual development and application of grammar rules. The method is based on a set grammar that uses a set of parameterized primitives and includes the definition of nonparametric and parametric rules, as well as their automatic application. A method for the automatic matching of the left hand side of a rule in a current working shape, including defining parametric relations, is outlined. A prototype implementation is presented and used to illustrate the approach through three examples: the “kindergarten grammar,” vehicle wheel rims, and cylinder cooling fins. This approach puts the creation and use of 3-D spatial grammars on a more general level and supports designers with facilitated definition and application of their own rules in a familiar computer-aided design environment without requiring programming.


2007 ◽  
Vol 111 (49) ◽  
pp. 17989-17992 ◽  
Author(s):  
Heeyeon P. Wampler ◽  
Dmitry Y. Zemlyanov ◽  
Albena Ivanisevic

Author(s):  
Nikolaos Chalmpes ◽  
Georgios Asimakopoulos ◽  
Maria Baikousi ◽  
Athanasios B. Bourlinos ◽  
Michael A. Karakassides ◽  
...  

Hypergolic materials synthesis is a new preparative technique in materials science that allows a wide range of carbon or inorganic solids with useful properties to be obtained. Previously we have demonstrated that metallocenes are versatile reagents in the hypergolic synthesis of inorganic materials, such as γ-Fe2O3, Cr2O3, Co, Ni and alloy CoNi. Here, we take one step further by using metallocene dichlorides as precursors for the hypergolic synthesis of additional inorganic phases, such as photocatalytic titania. Metallocene dichlorides are closely related to metallocenes, thus expanding the arsenal of organometallic compounds that can be used in hypergolic materials synthesis. In the present case, we show that hypergolic ignition of the titanocene dichloride-fuming nitric acid pair results in the fast and spontaneous formation of titania nanoparticles at ambient conditions in the form of anatase-rutile mixed phases. The obtained titania shows good photocatalytic activity towards Cr(VI) removal (100 % within 9 h), the latter being dramatically enhanced after calcination of the powder at 500 °C (100 % within 3 h). Worth noting, this performance was found to be comparable to that of commercially available P25 TiO2 under identical conditions. The cases of zirconocene, hafnocene and molybdocene dichlorides are complementary discussed in this work, aiming to show the wider applicability of metallocene dichlorides in the hypergolic synthesis of inorganic materials (ZrO2, HfO2, MoO2).


Sign in / Sign up

Export Citation Format

Share Document