CFD Studies on Burner Secondary Air Flow

Author(s):  
Anil K. Purimetla ◽  
Jie Cui ◽  
Stephen Idem ◽  
Sastry Munukutla

In many fossil power plants operating today, there is insufficient means to assure the proper balancing of the secondary airflows between the individual burners of wall-fired units in addition there is a problem of dust deposition on the floor. This mismatch leads to decreased boiler efficiency and increased emissions. In this study, a Computational Fluid Dynamics (CFD) modeling of a fossil power plant wind box scale model is performed using the commercial software CFX5.6. The model solves the three dimensional Reynolds averaged Navier-Stokes equations with the K-epsilon turbulence model. The CFD results are validated by the experimental data taken from a 1/8th scale model of a wall fired fossil unit. Simulations under various flow conditions are obtained to identify the optimum design in terms of the equalization of the secondary airflow through the burners.

2002 ◽  
Vol 466 ◽  
pp. 17-52 ◽  
Author(s):  
BERNARD BUNNER ◽  
GRÉTAR TRYGGVASON

Direct numerical simulations of the motion of up to 216 three-dimensional buoyant bubbles in periodic domains are presented. The full Navier–Stokes equations are solved by a parallelized finite-difference/front-tracking method that allows a deformable interface between the bubbles and the suspending fluid and the inclusion of surface tension. The governing parameters are selected such that the average rise Reynolds number is about 12–30, depending on the void fraction; deformations of the bubbles are small. Although the motion of the individual bubbles is unsteady, the simulations are carried out for a sufficient time that the average behaviour of the system is well defined. Simulations with different numbers of bubbles are used to explore the dependence of the statistical quantities on the size of the system. Examination of the microstructure of the bubbles reveals that the bubbles are dispersed approximately homogeneously through the flow field and that pairs of bubbles tend to align horizontally. The dependence of the statistical properties of the flow on the void fraction is analysed. The dispersion of the bubbles and the fluctuation characteristics, or ‘pseudo-turbulence’, of the liquid phase are examined in Part 2.


2012 ◽  
Vol 1 (33) ◽  
pp. 59 ◽  
Author(s):  
Pierre Lubin ◽  
Stéphane Glockner

This paper presents the application of a parallel numerical code to breaking solitary waves impacting a seawall structure. The three-dimensional Navier-Stokes equations are solved in air and water, coupled with a subgrid-scale model to take turbulence into account. We compared three numerical methods for the free-surface description, using the classical VOF-PLIC and VOF-TVD methods, and an original VOF-SM method recently developed in our numerical tool (Vincent et al., 2010). Some experimental data for solitary waves impinging and overtopping coastal structures are available in literature (Hsiao et al., 2010). Solitary waves are often used to model tsunami behaviors because of their hydrodynamic similarities. From a numerical point of view, it allows shorter CPU time simulations, as only one wave breaks. Here we apply the model to simulate three-dimensional solitary waves and compare qualitatively our results with the experimental data. We investigate three configurations of solitary waves impinging and overtopping an impermeable seawall on a 1:20 sloping beach.


Author(s):  
Meilan Chen ◽  
Zeming Zheng

During the process of core melt-down accident in light water reactors, large quantities of hydrogen generated by drastic water-metal reaction are released to the containment. Subsequently, hydrogen-rich layer may be formed under the dome of the containment, threatening the integrity of nuclear Power Plants (NPPs). In the framework of a China national R&D project, China Nuclear Power Research Institute (CNPRI) has developed a three dimensional CFD Code for the assessment of hydrogen behaviors and relative thermal hydraulics in containment. The code solves the time-dependent Navier-Stokes Equations with multi-gas species. Validation with International Standard Problems (ISP) and other test data based on a Phenomena Identification and Ranking Table (PIRT) has been undergoing together with the development of this code. In this paper, the test cases of HYJET, COPAIN and TOSQAN 101 Test are validated. Stratification, buoyancy induced mixing in gases, convection heat transfer and condensation on surface are evaluated in the former two cases, while gas entrainment and mixing by spray droplets in the later one. Excellent agreements between experimental data and model predictions are obtained. In order to meet the requirements for application of the code in practical NPP design and safety analysis, further validations of other phenomena in PIRT should be performed in the near future.


2019 ◽  
Vol 150 (2) ◽  
pp. 569-606 ◽  
Author(s):  
Dat Cao ◽  
Luan Hoang

AbstractThe Navier-Stokes equations for viscous, incompressible fluids are studied in the three-dimensional periodic domains, with the body force having an asymptotic expansion, when time goes to infinity, in terms of power-decaying functions in a Sobolev-Gevrey space. Any Leray-Hopf weak solution is proved to have an asymptotic expansion of the same type in the same space, which is uniquely determined by the force, and independent of the individual solutions. In case the expansion is convergent, we show that the next asymptotic approximation for the solution must be an exponential decay. Furthermore, the convergence of the expansion and the range of its coefficients, as the force varies are investigated.


2020 ◽  
Author(s):  
Luis A. Martínez-Tossas ◽  
Jennifer King ◽  
Eliot Quon ◽  
Christopher J. Bay ◽  
Rafael Mudafort ◽  
...  

Abstract. This work focuses on minimizing the computational cost of steady-state wind power plant flow simulations that take into account wake steering physics. We present a simple wake solver with a computational cost on the order of seconds for large wind plants. The solver uses a simplified form of the Reynolds-averaged Navier-Stokes equations to obtain a parabolic equation for the wake deficit of a wind plant. We compare results from the model to supervisory control and data acquisition (SCADA) from the Lillgrund wind plant; good agreement is obtained. Results for the solver in complex terrain are also shown. Finally, the solver is demonstrated for a case with wake steering showing good agreement with power reported by large-eddy simulations. This new solver minimizes the time – and therefore the related cost – it takes to conduct a steady-state wind plant flow simulation to about a second on a personal laptop. This solver can be used for different applications including wake steering for wind power plants and layout optimization, and it will soon be available within the FLOw Redirection and Induction in Steady State (FLORIS) framework.


2020 ◽  
Vol 14 (4) ◽  
pp. 7369-7378
Author(s):  
Ky-Quang Pham ◽  
Xuan-Truong Le ◽  
Cong-Truong Dinh

Splitter blades located between stator blades in a single-stage axial compressor were proposed and investigated in this work to find their effects on aerodynamic performance and operating stability. Aerodynamic performance of the compressor was evaluated using three-dimensional Reynolds-averaged Navier-Stokes equations using the k-e turbulence model with a scalable wall function. The numerical results for the typical performance parameters without stator splitter blades were validated in comparison with experimental data. The numerical results of a parametric study using four geometric parameters (chord length, coverage angle, height and position) of the stator splitter blades showed that the operational stability of the single-stage axial compressor enhances remarkably using the stator splitter blades. The splitters were effective in suppressing flow separation in the stator domain of the compressor at near-stall condition which affects considerably the aerodynamic performance of the compressor.


Processes ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 841
Author(s):  
Yuzhen Jin ◽  
Huang Zhou ◽  
Linhang Zhu ◽  
Zeqing Li

A three-dimensional numerical study of a single droplet splashing vertically on a liquid film is presented. The numerical method is based on the finite volume method (FVM) of Navier–Stokes equations coupled with the volume of fluid (VOF) method, and the adaptive local mesh refinement technology is adopted. It enables the liquid–gas interface to be tracked more accurately, and to be less computationally expensive. The relationship between the diameter of the free rim, the height of the crown with different numbers of collision Weber, and the thickness of the liquid film is explored. The results indicate that the crown height increases as the Weber number increases, and the diameter of the crown rim is inversely proportional to the collision Weber number. It can also be concluded that the dimensionless height of the crown decreases with the increase in the thickness of the dimensionless liquid film, which has little effect on the diameter of the crown rim during its growth.


Author(s):  
Eiman B Saheby ◽  
Xing Shen ◽  
Anthony P Hays ◽  
Zhang Jun

This study describes the aerodynamic efficiency of a forebody–inlet configuration and computational investigation of a drone system, capable of sustainable supersonic cruising at Mach 1.60. Because the whole drone configuration is formed around the induction system and the design is highly interrelated to the flow structure of forebody and inlet efficiency, analysis of this section and understanding its flow pattern is necessary before any progress in design phases. The compression surface is designed analytically using oblique shock patterns, which results in a low drag forebody. To study the concept, two inlet–forebody geometries are considered for Computational Fluid Dynamic simulation using ANSYS Fluent code. The supersonic and subsonic performance, effects of angle of attack, sideslip, and duct geometries on the propulsive efficiency of the concept are studied by solving the three-dimensional Navier–Stokes equations in structured cell domains. Comparing the results with the available data from other sources indicates that the aerodynamic efficiency of the concept is acceptable at supersonic and transonic regimes.


Sign in / Sign up

Export Citation Format

Share Document