Spray Penetration and Drop Size Studies of Diesel Fuels

Author(s):  
Badih A. Jawad ◽  
Chris H. Riedel ◽  
Ahmad Bazzari

Understanding the disintegration mechanism, spray penetration, and spray motion is of great importance in the design of a high quality diesel engine. The atomization process that a liquid would undergo as it is injected into a high-temperature, high-pressure air, is investigated in this work. The purpose of this study is to gain further insight into the atomization mechanism, the variation over time in droplet size distribution and spray penetration. This is done based on effect of chamber pressure, injection pressure, and type of fuel. A laser diffraction method is used to determine droplet mean diameters, single injection with synchronized time mechanism allowed the time dependent studies. Obscuration signals are obtained through a digital oscilloscope from which arrival time of spray can be measured. The spray penetration correlation obtained is compared to other correlation’s obtained from different other techniques used in the literature.

2005 ◽  
Author(s):  
Badih A. Jawad ◽  
Chris H. Riedel ◽  
Ahmad Bazzari

Understanding the disintegration mechanism, spray penetration, and spray motion is of great importance in the design of a high quality diesel engine. The atomization process that a liquid would undergo as it is injected into a high-temperature, high-pressure air, is investigated in this work. The purpose of this study is to gain further insight into the atomization mechanism, the variation over time in droplet size distribution and spray penetration. This is done based on the effects of chamber pressure, injection pressure, and type of fuel. A laser diffraction method is used to determine droplet mean diameters, single injection with synchronized time mechanism allowed the time dependent studies. Obscuration signals are obtained through a digital oscilloscope from which arrival time of spray can be measured. A spray penetration correlation is reported.


2002 ◽  
Author(s):  
Badih A. Jawad

The purpose of this study is to gain further insight into the atomization mechanism, the variation over time in droplet size distribution and spray penetration. This is done based on effect of chamber pressure, injection pressure, and type of fuel. A laser diffraction method is used to determine droplet mean diameters, single injection with synchronized time mechanism allowed the time dependent studies. Obscuration signals are obtained through a digital oscilloscope from which arrival time of spray can be measured. The spray penetration correlation obtained is compared to other correlations obtained from other techniques used in the literature.


Author(s):  
Badih A. Jawad ◽  
Chris H. Riedel ◽  
Ahmad A. Bazzari

Understanding the disintegration mechanism, spray penetration, and spray motion is of great importance in the design of a high quality diesel engine. The atomization process that a liquid would undergo as it is injected into a high-temperature, high-pressure air, is investigated in this work. The purpose of this study is to gain further insight into the atomization mechanism, the variation over time in droplet size distribution and spray penetration. This is done based on effect of chamber pressure, injection pressure, and type of fuel. A laser diffraction method is used to determine droplet mean diameters, single injection with synchronized time mechanism allowed the time dependent studies. Obscuration signals are obtained through a digital oscilloscope from which arrival time of spray can be measured. The spray penetration correlation obtained is compared to other correlation’s obtained from different other techniques used in the literature.


2019 ◽  
Vol 12 (3) ◽  
pp. 262-271
Author(s):  
T.N. Rajesh ◽  
T.J.S. Jothi ◽  
T. Jayachandran

Background: The impulse for the propulsion of a rocket engine is obtained from the combustion of propellant mixture inside the combustion chamber and as the plume exhausts through a convergent- divergent nozzle. At stoichiometric ratio, the temperature inside the combustion chamber can be as high as 3500K. Thus, effective cooling of the thrust chamber becomes an essential criterion while designing a rocket engine. Objective: A new cooling method of thrust chambers was introduced by Chiaverni, which is termed as Vortex Combustion Cold-Wall Chamber (VCCW). The patent works on cyclone separators and confined vortex flow mechanism for providing high propellant mixing with improved degree of turbulence inside the combustion chamber, providing the required notion for studies on VCCW. The flow inside a VCCW has a complex structure characterised by axial pressure losses, swirl velocities, centrifugal force, flow reversal and strong turbulence. In order to study the flow phenomenon, both the experimental and numerical investigations are carried out. Methods: In this study, non-reactive flow analysis was conducted with real propellants like gaseous oxygen and hydrogen. The test was conducted to analyse the influence of mixture ratio and injection pressure of the propellants on the chamber pressure in a vortex combustion chamber. A vortex combustor was designed in which the oxidiser injected tangentially at the aft end near the nozzle spiraled up to the top plate and formed an inner core inside the chamber. The fuel was injected radially from injectors provided near the top plate and the propellants were mixed in the inner core. This resulted in enhanced mixing and increased residence time for the fuel. More information on the flow behaviour has been obtained by numerical analysis in Fluent. The test also investigated the sensitivity of the tangential injection pressure on the chamber pressure development. Results: All the test cases showed an increase in chamber pressure with the mixture ratio and injection pressure of the propellants. The maximum chamber pressure was found to be 3.8 bar at PC1 and 2.7 bar at PC2 when oxidiser to fuel ratio was 6.87. There was a reduction in chamber pressure of 1.1 bar and 0.7 bar at PC1 and PC2, respectively, in both the cases when hydrogen was injected. A small variation in the pressure of the propellant injected tangentially made a pronounced effect on the chamber pressure and hence vortex combustion chamber was found to be very sensitive to the tangential injection pressure. Conclusion: VCCW mechanism has been to be found to be very effective for keeping the chamber surface within the permissible limit and also reducing the payload of the space vehicle.


2011 ◽  
Vol 347-353 ◽  
pp. 66-69
Author(s):  
Jian Xin Liu ◽  
Song Liu ◽  
Hui Yong Du ◽  
Zhan Cheng Wang ◽  
Bin Xu

The fuel spray images were taken with an equipment (camera-flash-injection) which has been synchronized with a purpose made electronic system under the condition of the high pressure common rail in two injection pressure has been expressed in this paper. It is discovered when fitting spray tip penetration that after jet breakup for a period of time, the spray tip begin to slow down rapidly, and the speed of spray tip running becomes smooth. Hiroyasu and other traditional tip penetration fitting formula are fitting larger to this phase. This is because that after jet breakup, the secondary breakup of striker particles will occur under the influence of the aerodynamic, surface tension and viscosity force. Therefore, a spray penetration fitting formula containing secondary breakup time to fit penetration in three sections was proposed in this paper. Results show that when pressure difference increase, both first and second breakup time become earlier. The former is because of gas-liquid relative velocity increasing, while the latter is due to high speed interface movement acceleration increasing.


Author(s):  
Subhash Lahane ◽  
K. A. Subramanian

The effect of spray penetration distance on fuel impingement on piston bowl of a 7.4 kW diesel engine for biodiesel-diesel blend (B20) was studied using modeling and CFD simulation. As the peak inline fuel pressure increased from 460 bar with base diesel to 480 bar with B20, the spray penetration distance (fuel jet) increases. It is observed from the study that the jet tip hits on piston bowl resulting to fuel impingement which is one of durability issues for use of biodiesel blend in the diesel engine. In addition to this, the simulation of effects of different injection pressures up to 2000 bar on spray penetration distance and wall impingement were also studied. The penetration distance increases with increase the in-line fuel pressure and it decreases with decrease nozzle hole diameter. The fuel impingement on piston bowl of the engine with high injection pressure (typically 1800 bar) can be avoided by decreasing the nozzle diameter from 0.19 mm to 0.1 mm. Increase in swirl ratio could also reduce fuel impingement problem.


Author(s):  
Wenliang Qi ◽  
Zilong Yang ◽  
Pingjian Ming ◽  
Wenping Zhang ◽  
Ming Jia ◽  
...  

An improved droplet breakup model coupled with the effect of turbulence flow within the nozzle was implemented into the general transport equation analysis code to describe the flame lift-off length and predict the soot distribution. This model was first validated by the non-evaporating and evaporating spray experimental data. The computational results demonstrate that the breakup model is capable of predicted spray penetration and liquid length with reasonable accuracy. The inclusion of turbulence enhanced the breakup model, increased the droplet breakup rate, decreased spray penetration for about 6–12% compared to the results of Kelvin-Helmholtz Rayleigh-Taylor (KH-RT) breakup model. Then, the model was applied to investigate the influence of ambient density, temperature, oxygen concentration and injection pressure on the flame lift-off length under typical diesel combustion conditions. The predictions showed good agreement with the experimental data. The result also indicated that the turbulence inside the nozzle strengthen the rate of breakup, resulting in more smaller droplets, leading to high evaporation rate and smaller vapour penetration lengths, thus decreases the lift-off length about 8%. Finally, the model was used to explore the soot distribution. The overall trend of soot with the variations in injection pressure was well reproduced by the breakup model. It was found that the droplet with faster velocity under high injection pressure, this could lead to larger lift-off length, which will play a significant role for the fuel–air mixing process and thus cause a decrease in soot in the fuel jet. Results further indicated that the turbulence term can decrease the soot mass about 5–9% by improved the droplet breakup process.


Author(s):  
Badih A. Jawad

Previous studies dealing with sprays have used a variety of techniques to determine spray droplets and spray penetration. In particular, the sedimentation tower method and the liquid immersion sampling technique were most popular. However, in these techniques sampling is done after spray formation is complete. The completion time of spray formation appears to vary with the conditions of injection and ambient factors, thus making measurements under transient conditions during injection difficult. A pulsed Malvern drop-size analyzer, based on Fraunhofer diffraction, was utilized to determine spray penetrations of diesel fuels under different conditions of injection, along with the effects of fuel properties. In these study, the spray is formed by injecting a calibrated amount of fuel into air. A two mm diameter collimated beam illuminated a cylindrical volume perpendicular to the axis of the fuel spray, and its attenuation was recorded and stored on the oscilloscope. With the optical measurement being synchronized to the needle lift of the injector, the output of the needle lift transducer and the optical signal was recorded simultaneously. Thus, the arrival and the duration of the spray at various positions along its axis were measured. A spray penetration correlation is obtained, and is compared to other existing correlations in the literature.


Author(s):  
I. Pribicevic ◽  
T. Sattelmayer

Diesel air-fuel mixing and combustion have been investigated in a Rapid Compression Machine (RCM). The measurements were performed at high injection pressures up to 260 MPa and under reacting and non-reacting conditions. The spray was injected through solenoid-controlled multi-hole injectors. Two nozzles were applied with orifice diameters of 175 μm (D175) and 150 μm (D150), respectively. The visualization of the penetration of the liquid and the gaseous phase as well as the spray cone angle under evaporative, non-reacting conditions was carried out by the shadowgraph imaging technique in combination with a high speed camera. For combustion studies the flame luminosity of the flame as well as the chemiluminescence signals emitted by the OH radicals in the UV range were detected. Investigations revealed different behavior of the macroscopic spray characteristics with the two applied nozzles when increasing the injection pressure from 200 MPa to 260 MPa. With the larger nozzle diameter (D175) the spray penetration and the spray propagation velocity increase as the injection pressure is increased. On the contrary to that, with the smaller nozzle diameter (D150) an increase of the injection pressure had no effect on the spray velocity. With 260 MPa a higher spray penetration was only observed at the beginning of the injection due to the faster opening of the needle. The further propagation of the tip of the spray was similar with 200 MPa and 260 MPa. With both applied nozzles the injection pressure has little effect on the penetration length of the liquid phase. At an applied injection pressure of 200 MPa the near-nozzle spray angle is wider with D175, whereas similar spray angles were observed at 260 MPa. From the measurements in reacting atmosphere an earlier ignition of the fuel and a faster combustion could be shown with nozzle D150. In addition, a higher combustion pressure was measured. This can be attributed to better air-fuel mixing and a higher premixed portion, which was confirmed by the analysis of the spray angles in the far-nozzle region obtained from the shadowgraph images at non-reacting conditions.


Sign in / Sign up

Export Citation Format

Share Document