Effect of hybrid breakup modelling on flame lift-off length and soot predictions

Author(s):  
Wenliang Qi ◽  
Zilong Yang ◽  
Pingjian Ming ◽  
Wenping Zhang ◽  
Ming Jia ◽  
...  

An improved droplet breakup model coupled with the effect of turbulence flow within the nozzle was implemented into the general transport equation analysis code to describe the flame lift-off length and predict the soot distribution. This model was first validated by the non-evaporating and evaporating spray experimental data. The computational results demonstrate that the breakup model is capable of predicted spray penetration and liquid length with reasonable accuracy. The inclusion of turbulence enhanced the breakup model, increased the droplet breakup rate, decreased spray penetration for about 6–12% compared to the results of Kelvin-Helmholtz Rayleigh-Taylor (KH-RT) breakup model. Then, the model was applied to investigate the influence of ambient density, temperature, oxygen concentration and injection pressure on the flame lift-off length under typical diesel combustion conditions. The predictions showed good agreement with the experimental data. The result also indicated that the turbulence inside the nozzle strengthen the rate of breakup, resulting in more smaller droplets, leading to high evaporation rate and smaller vapour penetration lengths, thus decreases the lift-off length about 8%. Finally, the model was used to explore the soot distribution. The overall trend of soot with the variations in injection pressure was well reproduced by the breakup model. It was found that the droplet with faster velocity under high injection pressure, this could lead to larger lift-off length, which will play a significant role for the fuel–air mixing process and thus cause a decrease in soot in the fuel jet. Results further indicated that the turbulence term can decrease the soot mass about 5–9% by improved the droplet breakup process.

2011 ◽  
Vol 347-353 ◽  
pp. 66-69
Author(s):  
Jian Xin Liu ◽  
Song Liu ◽  
Hui Yong Du ◽  
Zhan Cheng Wang ◽  
Bin Xu

The fuel spray images were taken with an equipment (camera-flash-injection) which has been synchronized with a purpose made electronic system under the condition of the high pressure common rail in two injection pressure has been expressed in this paper. It is discovered when fitting spray tip penetration that after jet breakup for a period of time, the spray tip begin to slow down rapidly, and the speed of spray tip running becomes smooth. Hiroyasu and other traditional tip penetration fitting formula are fitting larger to this phase. This is because that after jet breakup, the secondary breakup of striker particles will occur under the influence of the aerodynamic, surface tension and viscosity force. Therefore, a spray penetration fitting formula containing secondary breakup time to fit penetration in three sections was proposed in this paper. Results show that when pressure difference increase, both first and second breakup time become earlier. The former is because of gas-liquid relative velocity increasing, while the latter is due to high speed interface movement acceleration increasing.


2021 ◽  
Vol 7 ◽  
Author(s):  
Khanh Duc Cung ◽  
Ahmed Abdul Moiz ◽  
Xiucheng Zhu ◽  
Seong-Young Lee

Advanced combustion systems that utilize different combustion modes and alternative fuels have significantly improved combustion performance and emissions compared to conventional diesel or spark-ignited combustions. As an alternative fuel, dimethyl ether (DME) has been receiving much attention as it runs effectively under low-temperature combustion (LTC) modes such as homogeneous charge compression ignition (HCCI) and reactivity control combustion ignition (RCCI). Under compression-ignition (CI), DME can be injected as liquid fuel into a hot chamber, resulting in a diesel-like spray/combustion characteristic. With its high fuel reactivity and unique chemical formula, DME ignites easily but produces almost smokeless combustion. In the current study, DME spray combustion under several different conditions of ambient temperature (Tamb = 750–1100 K), ambient density (ρamb = 14.8–30 kg/m3), oxygen concentration (O2 = 15–21%), and injection pressure (Pinj = 75–150 MPa) were studied. The results from both experiments (constant-volume combustion vessel) and numerical simulations were used to develop empirical correlations for ignition and lift-off length. Compared to diesel, the established correlation of DME shows a similar Arrhenius-type expression. Sensitivity studies show that Tamb and Pinj have a stronger effect on DME's ignition and combustion than other parameters. Finally, this study provides a simplified conceptual mechanism of DME reacting spray under high reactivity ambient (high Tamb, high O2) and LTC conditions. Finally, this paper discusses engine operating strategies using a non-conventional fuel such as DME with different reactivity and chemical properties.


Author(s):  
Wenjin Qin ◽  
Dengbiao Lu ◽  
Lihui Xu

Abstract In this research, n-dodecane and JW are selected as single and multi-component surrogate fuel of aviation kerosene to study the Jet-A spray combustion characteristics. The spray combustion phenomena are simulated using large eddy simulation coupled with detailed chemical reaction mechanism. Proper orthogonal decomposition method is applied to analyze the flow field characteristics, and the instantaneous velocity field are decomposed into four parts, namely the mean field, coherent field, transition field and turbulent field, respectively. The four subfields have their own characteristics. In terms of different fuels, JW has a higher intensity of coherent structures and local vortices than n-dodecane, which promotes the fuel-air mixing and improves the combustion characteristics, and the soot formation is significantly reduced. In addition, with the increase of initial temperature, the combustion is more intense, the ignition delay time is advanced, the flame lift-off length is reduced, and soot formation is increased accordingly.


Aerospace ◽  
2019 ◽  
Vol 6 (2) ◽  
pp. 21
Author(s):  
Phillip Burgers

An extant bird resorts to flapping and running along its take-off run to generate lift and thrust in order to reach the minimum required wing velocity speed required for lift-off. This paper introduces the replication hypothesis that posits that the variation of lift relative to the thrust generated by the flapping wings of an extant bird, along its take-off run, replicates the variation of lift relative to the thrust by the flapping wings of a protobird as it evolves towards sustained flight. The replication hypothesis combines experimental data from extant birds with evidence from the paleontological record of protobirds to come up with a physics-based model of its evolution towards sustained flight while scaling down the time span from millions of years to a few seconds. A second hypothesis states that the vertical and horizontal forces acting on a protobird when it first encounters lift-off are in equilibrium as the protobird exerts its maximum available power for flapping, equaling its lift with its weight, and its thrust with its drag.


Author(s):  
Subhash Lahane ◽  
K. A. Subramanian

The effect of spray penetration distance on fuel impingement on piston bowl of a 7.4 kW diesel engine for biodiesel-diesel blend (B20) was studied using modeling and CFD simulation. As the peak inline fuel pressure increased from 460 bar with base diesel to 480 bar with B20, the spray penetration distance (fuel jet) increases. It is observed from the study that the jet tip hits on piston bowl resulting to fuel impingement which is one of durability issues for use of biodiesel blend in the diesel engine. In addition to this, the simulation of effects of different injection pressures up to 2000 bar on spray penetration distance and wall impingement were also studied. The penetration distance increases with increase the in-line fuel pressure and it decreases with decrease nozzle hole diameter. The fuel impingement on piston bowl of the engine with high injection pressure (typically 1800 bar) can be avoided by decreasing the nozzle diameter from 0.19 mm to 0.1 mm. Increase in swirl ratio could also reduce fuel impingement problem.


Author(s):  
Festus Eghe Agbonzikilo ◽  
Ieuan Owen ◽  
Jill Stewart ◽  
Suresh Kumar Sadasivuni ◽  
Mike Riley ◽  
...  

This paper presents the results of an investigation in which the fuel/air mixing process in a single slot within the radial swirler of a dry low emission (DLE) combustion system is explored using air/air mixing. Experimental studies have been carried out on an atmospheric test facility in which the test domain is a large-scale representation of a swirler slot from a Siemens proprietary DLE combustion system. Hot air with a temperature of 300 °C is supplied to the slot, while the injected fuel gas is simulated using air jets with temperatures of about 25 °C. Temperature has been used as a scalar to measure the mixing of the jets with the cross-flow. The mixture temperatures were measured using thermocouples while Pitot probes were used to obtain local velocity measurements. The experimental data have been used to validate a computational fluid dynamics (CFD) mixing model. Numerical simulations were carried out using CFD software ansys-cfx. Due to the complex three-dimensional flow structure inside the swirler slot, different Reynolds-averaged Navier–Stokes (RANS) turbulence models were tested. The shear stress transport (SST) turbulence model was observed to give best agreement with the experimental data. The momentum flux ratio between the main air flow and the injected fuel jet, and the aerodynamics inside the slot were both identified by this study as major factors in determining the mixing characteristics. It has been shown that mixing in the swirler can be significantly improved by exploiting the aerodynamic characteristics of the flow inside the slot. The validated CFD model provides a tool which will be used in future studies to explore fuel/air mixing at engine conditions.


Author(s):  
Badih A. Jawad ◽  
Chris H. Riedel ◽  
Ahmad Bazzari

Understanding the disintegration mechanism, spray penetration, and spray motion is of great importance in the design of a high quality diesel engine. The atomization process that a liquid would undergo as it is injected into a high-temperature, high-pressure air, is investigated in this work. The purpose of this study is to gain further insight into the atomization mechanism, the variation over time in droplet size distribution and spray penetration. This is done based on effect of chamber pressure, injection pressure, and type of fuel. A laser diffraction method is used to determine droplet mean diameters, single injection with synchronized time mechanism allowed the time dependent studies. Obscuration signals are obtained through a digital oscilloscope from which arrival time of spray can be measured. The spray penetration correlation obtained is compared to other correlation’s obtained from different other techniques used in the literature.


Author(s):  
I. Pribicevic ◽  
T. Sattelmayer

Diesel air-fuel mixing and combustion have been investigated in a Rapid Compression Machine (RCM). The measurements were performed at high injection pressures up to 260 MPa and under reacting and non-reacting conditions. The spray was injected through solenoid-controlled multi-hole injectors. Two nozzles were applied with orifice diameters of 175 μm (D175) and 150 μm (D150), respectively. The visualization of the penetration of the liquid and the gaseous phase as well as the spray cone angle under evaporative, non-reacting conditions was carried out by the shadowgraph imaging technique in combination with a high speed camera. For combustion studies the flame luminosity of the flame as well as the chemiluminescence signals emitted by the OH radicals in the UV range were detected. Investigations revealed different behavior of the macroscopic spray characteristics with the two applied nozzles when increasing the injection pressure from 200 MPa to 260 MPa. With the larger nozzle diameter (D175) the spray penetration and the spray propagation velocity increase as the injection pressure is increased. On the contrary to that, with the smaller nozzle diameter (D150) an increase of the injection pressure had no effect on the spray velocity. With 260 MPa a higher spray penetration was only observed at the beginning of the injection due to the faster opening of the needle. The further propagation of the tip of the spray was similar with 200 MPa and 260 MPa. With both applied nozzles the injection pressure has little effect on the penetration length of the liquid phase. At an applied injection pressure of 200 MPa the near-nozzle spray angle is wider with D175, whereas similar spray angles were observed at 260 MPa. From the measurements in reacting atmosphere an earlier ignition of the fuel and a faster combustion could be shown with nozzle D150. In addition, a higher combustion pressure was measured. This can be attributed to better air-fuel mixing and a higher premixed portion, which was confirmed by the analysis of the spray angles in the far-nozzle region obtained from the shadowgraph images at non-reacting conditions.


2013 ◽  
Vol 393 ◽  
pp. 493-498 ◽  
Author(s):  
Amir Khalid ◽  
Christian Yohan M. Jaat ◽  
Izzuddin Zaman ◽  
B. Manshoor ◽  
M.F.M. Ali

The key issue in using vegetable oil-based fuels is oxidation stability, stoichiometric point, bio-fuel composition, antioxidants on the degradation and viscosity thus influences to the different spray atomization and fuel air mixing characteristics. Purpose of this study is to investigate the effect of preheated biodiesel on fuel properties, spray characteristics and mixture formation. The detail behavior of mixture formation was investigated using the direct photography system with a digital color camera. This method can capture spray evaporation, spray length and mixture formation clearly with real images. Increased preheated fuel is found to enhance the spray penetration, resulting in increased the spray area and enhanced fuel-air premixing.


Sign in / Sign up

Export Citation Format

Share Document