A Model for Contaminant Transport, Aggregation and Deposition in Lubricated Contact of Rough Surfaces

2005 ◽  
Author(s):  
W. Cheng ◽  
K. Farhang ◽  
Y. Kwon

Effective prediction of lubricated contact poses an especially challenging problem. On the one hand surfaces are non-smooth at micron-scale while, on the other hand, a lubricant contains varying degrees of impurities in form of particle contaminants. An accurate model for lubricated contact, therefore, must be able to account for the various interactions that include particle-fluid, particle-particle, fluid-rough surface, particle-rough surface and rough surface-rough surface interactions. In the current study we propose the use of Lattice Boltzmann Method (LBM) and JKR theory for elasto-adhesive contact to simulate the particle transport processes in a lubricant flow between two rough surfaces. A particle dynamics simulation method is proposed to predict the interaction of a group of particles. The particle-particle and particle-boundary interactions are modeled by an extension of the JKR theory in which viscoelastic interactions are included through the implementation of the Kelvin-Voigt stress-strain relations. The particle-fluid interaction is calculated from the LBM simulation. Time scale relations between LBM and particle dynamics are characterized. Simulation results show the effects of particle density and surface roughness on frequencies of particle-particle and particle-boundary impacts, particle deposition rate, particle cluster forming and fluid boundary pressure changes due to particle deposition. A parametric study is performed to elucidate the effect of rough surface geometry and the relative velocity of the surfaces on friction and lift. The results provide fundamental insight on the contamination effects on wear and life of lubricated surfaces.

2005 ◽  
Vol 127 (1) ◽  
pp. 223-229 ◽  
Author(s):  
R. P. Glovnea ◽  
A. V. Olver ◽  
H. A. Spikes

In previous work it was shown that some functionalized polymers used as viscosity index improvers are able to form thick boundary lubricating films. This behavior results from adsorption of the polymer on metal surfaces to form a layer of enhanced viscosity adjacent to the surface. In the current work the behavior of one such polymer in rough surface contact conditions is studied, using both model and real rough surfaces. It is found that the polymer is able to form a thick boundary film in rough surface contact, just as it does with smooth surfaces. It is also shown that the effect of this boundary film is to significantly reduce friction in rolling-sliding, rough surface, lubricated contact.


Fractals ◽  
2019 ◽  
Vol 27 (05) ◽  
pp. 1950081
Author(s):  
SUCHEN WU ◽  
QIKUN CHENG ◽  
QUAN PENG ◽  
CHAOQUN SHEN

A molecular dynamics simulation is performed to study the liquid film evaporation on rough surfaces constructed by the Cantor set fractal. The liquid film evaporation on the rough surfaces with different roughness and fractal dimensions is presented and is compared with that on smooth surface. The results indicate that the response speed for evaporation on the rough surface is faster than that on the smooth surface and is accelerated with the increase of the roughness height and the fractal dimensions. Protrusions on the rough surface are conducive to heat transfer enhancement, and thus, the evaporation on a rough surface can reach equilibrium earlier than that on a smooth surface. With increasing roughness and fractal dimension, the evaporation rate and the thickness of the non-evaporating liquid layer increase.


2014 ◽  
Vol 592-594 ◽  
pp. 1371-1375
Author(s):  
Nitesh Talekar ◽  
Punit Kumar

Consideration of surface roughness in steady state EHL line contact is the first step towards understanding the lubrication of rough surface problem. Current paper investigates the use of sinusoidal waviness in the contact; more precisely it gives performance of real fluid in EHL line contact. The effect of various parameters like rolling velocity (U) and maximum Hertzian pressure (ph) on surface roughness by using properties of linear and exponential piezo-viscosity is taken into consideration to evaluate behavior of pressure distribution of load carrying fluid film and film thickness. Full isothermal, Newtonian simulation of EHL problem gives described effects. Spiking or fluctuation of pressure and film thickness curves is expected to show presence of irregularities on the surface chosen and amount of fluctuation depends on certain parameters and intensity of irregularities present. Rolling side domain of-4.5 ≤ X ≤ 1.5 with grid size ∆X=0.01375 is selected. A computer code is developed to solve Reynolds equation, which governs the generation of pressure in the lubricated contact zone is discritized and solved along with load balance equation using Newton-Raphson technique.


Soft Matter ◽  
2017 ◽  
Vol 13 (36) ◽  
pp. 6178-6188 ◽  
Author(s):  
Haina Tan ◽  
Chunyang Yu ◽  
Zhongyuan Lu ◽  
Yongfeng Zhou ◽  
Deyue Yan

This work discloses for the first time the self-assembly phase diagrams of amphiphilic hyperbranched multiarm copolymers in various solvents by dissipative particle dynamics simulations.


2009 ◽  
Vol 131 (2) ◽  
Author(s):  
Stephen T. McClain ◽  
Jason M. Brown

The discrete-element model for flows over rough surfaces was recently modified to predict drag and heat transfer for flow over randomly rough surfaces. However, the current form of the discrete-element model requires a blockage fraction and a roughness-element diameter distribution as a function of height to predict the drag and heat transfer of flow over a randomly rough surface. The requirement for a roughness-element diameter distribution at each height from the reference elevation has hindered the usefulness of the discrete-element model and inhibited its incorporation into a computational fluid dynamics (CFD) solver. To incorporate the discrete-element model into a CFD solver and to enable the discrete-element model to become a more useful engineering tool, the randomly rough surface characterization must be simplified. Methods for determining characteristic diameters for drag and heat transfer using complete three-dimensional surface measurements are presented. Drag and heat transfer predictions made using the model simplifications are compared to predictions made using the complete surface characterization and to experimental measurements for two randomly rough surfaces. Methods to use statistical surface information, as opposed to the complete three-dimensional surface measurements, to evaluate the characteristic dimensions of the roughness are also explored.


Sign in / Sign up

Export Citation Format

Share Document