Reliability Design and Case Study of a Refrigerator Compressor Subjected to Repetitive Loads

Author(s):  
Seong-Woo Woo ◽  
Dennis L. O’Neal ◽  
Yongchan Kim

A newly designed crank shaft of a compressor for a side-by-side (SBS) refrigerator was studied. Using standard mass and energy conservation balances, a variety of compressor loads typically found in a refrigeration cycle were analyzed. The laboratory failure modes and mechanisms were compressor locking and crank shaft wear. These were similar to those of the failed samples in the field. Failure analysis, accelerating life testing (ALT), and corrective action were used to identify the key reliability parameters and their level. The design parameters of the crank shaft included the hole locations and the groove of the crank shaft used for oil lubrication, crank shaft hardness, and thrust washer interference. Based on the analysis and design changes, the B1 life of the new design is now over 10 years with a yearly failure rate of 0.01 percent. A procedure was recommended for refrigerator parts design which included five steps.

2017 ◽  
Vol 2017 (1) ◽  
pp. 000517-000525
Author(s):  
Josh Liew ◽  
Otto Fanini

Abstract The oil and gas industry subsurface formation evaluation instruments experience significant challenging vibrations and shock levels. Equipment development requirements for these instruments include reliability and durability under these severe operating conditions. The engineering design for this equipment utilizes tools that enable the estimation of service lifetime, maintenance cycles, and related costs. These engineering tools model failure modes and their acceleration factors and how failures interact under certain circumstances. Laboratory test data and operations failure history are used to validate the model results. Incorporating equipment operational failure history into the reliability design after failure analysis, enables determination of failure modes and the length of stress level exposure. Before the equipment is commissioned to field operational service, it is subjected to a batch of environmental qualification tests under objective pass-fail criteria. The environmental qualification test conditions and adopted stress levels are acquired through measurements made with sensors (temperature, acceleration, and shock) in the equipment assembly during field operational conditions in targeted environments. After the equipment passes the qualification tests and final inspection, it is commissioned to field commercial service. This paper studies the development of specific equipment failures during operational field deployment after they were subjected to standard environmental qualifications tests. Various investigative actions focused on determining the cause and circumstances that led to the unexpected field failure. Results helped to introduce corrective updates to the equipment design and manufacturing, durability and reliability design models and procedures, environmental stress levels, and corresponding qualification test conditions. The equipment failures were examined, and comprehensive 3D custom vibration and stress modeling were conducted for the entire equipment assembly and each assembly module. The modeling results pinpointed and confirmed the high stress levels in the failure areas. These high stress levels exceeded the assembly construction strength thresholds, causing failures. The equipment assembly was modified and reinforced to properly support the detected stresses and provide the required lifetime reliability and durability for the operational service. A full 3D model of the equipment assembly was used for the vibration and bending load analysis including all mechanical assembly parts, electronics modules, couplings, and attachments. The 3D model was meshed with Tet and Hex elements in ANSYS application software, failure-prone and critical regions were meshed with finer divisions. In this analysis the electronics modules assembly were considered with all parts, attachments, structural frames, linkages, carriers, and printed circuit board (PCB) modules properly attached and connected to the main chassis structural carrier. Geometries, mass, module and assembly attachments, and material properties were assigned to components in this model. External loads and boundary conditions environmentally imposed to the assembly were applied in the model. Environmental conditions, shock, and vibration (x, y, and z) recorded from similar equipment deployed in subsurface operations in equivalent wells and geological formations were used in the modeling parameters. Displacement modeling data and analysis was performed for all mechanical structural components, PCB electronics module assemblies and assembly components, and module electronics component attachments. A model harmonic analysis under static conditions was performed to detect the oscillatory modes and vibratory resonances and the extent of oscillatory displacements. A structural and main carrier chassis modal analysis was conducted for the entire model, identifying the dominant oscillatory modes and natural structural oscillatory frequencies. The displacement can be used for detection of maximum allowable plastic deformation threshold and cyclic fatigue analysis of attachments, structural support members, and linkages for equipment service lifetime durability and reliability assessment. Past field instrumented operational conditions with documented failures and lab characterization of failure modes along with failure behavior and failure triggering thresholds have provided limits for the mechanical and electronics assembly technology with maximum acceleration level of random vibration and maximum equivalent stress level tolerated by the equipment's structural assembly, standard design techniques, and materials. With these structural stress and displacement limits the 3D modeling results were inspected for the entire assembly, identifying the points in the mesh model where these limits were exceeded. The inspection determined that these recommended limits had been exceeded according to the model results, placing a reduced importance to the adjustment of tolerable maximum stresses and displacements. The mesh points with excessive stress and displacement-induced fatigue coincided with the areas where field failure had been detected in examined field failed units. Because of this modeled assembly performance result and details from the externally imposed operational shocks and vibration, the equipment mechanical and electronics assembly structural design were re-engineered to produce an updated model simulation results that did not exceed the demonstrated cumulative failure threshold stresses in lab tests and field operations. The modified equipment assembly was built and environmentally re-tested in the lab environment with more instrumentation points and scrutiny around the failure critical areas. The test results were successful. After deployment of the new and updated equipment assembly version, its field deployment has not observed similar field failures compared with the previous design version. These modeling and engineering tools, qualification test procedures, and methods can be used to validate a new design or understand the most effective and economical approach to iterate the design before it is launched to field operations or after a field failure.


2019 ◽  
Vol 12 (3) ◽  
pp. 551-579
Author(s):  
K. O. PIRES ◽  
A. T. BECK ◽  
T. N. BITTENCOURT ◽  
M. M. FUTAI

Abstract The conventional design of concrete gravity dams still follows the deterministic method, which does not directly quantify the effect of uncertainties on the safety of the structure. The theory of structural reliability allows the quantification of safety of these structures, from the quantification of the inherent uncertainties in resistance and loading parameters. This article illustrates application of structural reliability theory to the case study analysis of a built concrete gravity dam. Results show that reliability of the built structure is greater than that of the designed structure. The study compares reliability for design conditions, with the corresponding safety coefficients, illustrating a lack of linearity between safety coefficients and reliability. Furthermore, the study shows which are the failure modes and the design parameters with greater influence on dam safety.


2020 ◽  
Vol 31 (4) ◽  
pp. 449-469
Author(s):  
Prabhu Shankar ◽  
Beshoy Morkos ◽  
Darshan Yadav ◽  
Joshua D. Summers

Abstract This paper explores the formal roles of non-functional requirements’ (NFR) elicitation, definition, and verification in the early stages of an engineering design project. This is performed using a case study conducted at an automotive original equipment manufacturer (OEM) during the design and development of a rear bumper sub-system. The purpose of this exploration is to determine if NFRs should be formalized within requirements modeling scheme. This can capture conceptual design information to identify their impact on other requirements while conducting design changes. The modeling scheme in this paper consists of a sequence of following domains—requirements, functions, working principle, components, design parameters, test measures, and tests—that are mapped to each other using matrices. It is revealed through this case study that non-functional requirements drive much of the design decision-making process and constrain the manner in which the product functionality is realized. Hence, the inclusion of NFRs as a separate and distinct domain in the design process is critical to recognize their significance during design changes. Based on the observations made in the case study, the NFR domain is included in the requirements modeling scheme.


2021 ◽  
Vol 349 ◽  
pp. 03009
Author(s):  
Seong-woo Woo ◽  
Dennis L. O’Neal ◽  
Yimer Mohammed Hassen

To enhance the design of mechanical systems, parametric Accelerated Life Testing (ALT) as a systematic reliability method is proposed as a way to evaluate the design of mechanical systems subjected to repeated impact stresses. It requires: (1) a parametric ALT scheme shaped on system BX lifetime, (2) a load inspection, (3) parametric ALTs with the associated design modifications, and (4) an assessment of whether the revised product design(s) reach the targeted BX life-time. We propose using a general life-stress model and sample size equation. A test example using both market data and parametric ALT was the redesign of a hinge kit system (HKS) in a refrigerator. To conduct parametric ALTs, a force and moment balance analysis was utilized. The mechanical impact loadings of the HKS were evaluated for an working refrigerator door. For the first ALT, the HKS failure happened in the crack/fracture of the kit housing and oil spilled from the damper when the HKS was disassembled. The failure modes and mechanisms constructed in the 1st ALT were similar to those of the unsuccessful samples found from the marketplace. The missing design parameters of the HKS included stress raisers such as corner roundings and the rib of the housing in HKS, the seal in the oil damper, and the material of the cover housing. In the second ALT, the cover housing fractured. The design defect of the cover housing in the HKS was the plastic material. As a corrective action plan, the cover housing was modified from plastic to aluminium. After the second ALT, the lifetime of the modified HKS was reassured to be B1 life 10 years with a yearly failure rate of 0.1%.


Author(s):  
Erick Kim ◽  
Kamjou Mansour ◽  
Gil Garteiz ◽  
Javeck Verdugo ◽  
Ryan Ross ◽  
...  

Abstract This paper presents the failure analysis on a 1.5m flex harness for a space flight instrument that exhibited two failure modes: global isolation resistances between all adjacent traces measured tens of milliohm and lower resistance on the order of 1 kiloohm was observed on several pins. It shows a novel method using a temperature controlled air stream while monitoring isolation resistance to identify a general area of interest of a low isolation resistance failure. The paper explains how isolation resistance measurements were taken and details the steps taken in both destructive and non-destructive analyses. In theory, infrared hotspot could have been completed along the length of the flex harness to locate the failure site. However, with a field of view of approximately 5 x 5 cm, this technique would have been time prohibitive.


Author(s):  
Martin Versen ◽  
Dorina Diaconescu ◽  
Jerome Touzel

Abstract The characterization of failure modes of DRAM is often straight forward if array related hard failures with specific addresses for localization are concerned. The paper presents a case study of a bitline oriented failure mode connected to a redundancy evaluation in the DRAM periphery. The failure mode analysis and fault modeling focus both on the root-cause and on the test aspects of the problem.


Author(s):  
Bhanu P. Sood ◽  
Michael Pecht ◽  
John Miker ◽  
Tom Wanek

Abstract Schottky diodes are semiconductor switching devices with low forward voltage drops and very fast switching speeds. This paper provides an overview of the common failure modes in Schottky diodes and corresponding failure mechanisms associated with each failure mode. Results of material level evaluation on diodes and packages as well as manufacturing and assembly processes are analyzed to identify a set of possible failure sites with associated failure modes, mechanisms, and causes. A case study is then presented to illustrate the application of a systematic FMMEA methodology to the analysis of a specific failure in a Schottky diode package.


2020 ◽  
Vol 14 ◽  
Author(s):  
Osama Bedair

Background: Modular steel buildings (MSB) are extensively used in petrochemical plants and refineries. Limited guidelines are available in the industry for analysis and design of (MSB) subject to accidental vapor cloud explosions (VCEs). Objectives: The paper presents simplified engineering model for modular steel buildings (MSB) subject to accidental vapor cloud explosions (VCEs) that are extensively used in petrochemical plants and refineries. Method: A Single degree of freedom (SDOF) dynamic model is utilized to simulate the dynamic response of primary building components. Analytical expressions are then provided to compute the dynamic load factors (DLF) for critical building elements. Recommended foundation systems are also proposed to install the modular building with minimum cost. Results: Numerical results are presented to illustrate the dynamic response of (MSB) subject to blast loading. It is shown that (DLF)=1.6 is attained at (td/t)=0.4 for front wall (W1) with (td/T)=1.25. For side walls (DLF)=1.41 and is attained at (td/t)=0.6. Conclusions: The paper presented simplified tools for analysis and design of (MSB) subject accidental vapor cloud blast explosions (VCEs). The analytical expressions can be utilized by practitioners to compute the (MSB) response and identify the design parameters. They are simple to use compared to Finite Element Analysis.


Sign in / Sign up

Export Citation Format

Share Document