Patterns of Secondary Flow Field in a Circular Tube Caused by Corona Wind Using the Method of Characteristics

Author(s):  
Reza Baghaei Lakeh ◽  
Majid Molki

Corona discharge is widely known as an effective method for improving the characteristics of the flow field and enhancing heat transfer. Distribution of charge density and electric field form a Coulomb body force which acts on the charged particles within the fluid and generates a secondary flow field. The thermal enhancing effects of corona wind are normally dominant in low Reynolds numbers or free convection problems. Although the governing differential equations of corona discharge are relatively simple, solving these equations by conventional computational methods does not yield a smooth solution for charge density and electric field. In particular, the results obtained from finite-volume method suffer from dispersion errors and fluctuations which lead to distorted values of electric body force, and consequently a distorted secondary flow. In this study, the corona discharge in a circular tube with the electrode positioned at the tube centerline is considered. An exact solution for charge density, electric field, and potential distribution along the radius of the tube has been derived analytically using a Lagrangian formulation for the charge density and the Method of Characteristics. It was found that the results of this method do not show any fluctuations or dispersion effects on charge density and electric field. The solution of the electric field provided a body force which was used in the Navier-Stokes equations to obtain the secondary flow in the cross section of the tube. In this paper, the electric and fluid flow fields are presented. The results are compared with those obtained by other computational methods and the differences are discussed.

Author(s):  
A. Perdichizzi ◽  
V. Dossena

This paper describes the results of an experimental investigation of the three-dimensional flow downstream of a linear turbine cascade at off-design conditions. The tests have been carried out for five incidence angles from −60 to +35 degrees, and for three pitch-chord ratios: s/c = 0.58,0.73,0.87. Data include blade pressure distributions, oil flow visualizations, and pressure probe measurements. The secondary flow field has been obtained by traversing a miniature five hole probe in a plane located at 50% of an axial chord downstream of the trailing edge. The distributions of local energy loss coefficients, together with vorticity and secondary velocity plots show in detail how much the secondary flow field is modified both by incidence and cascade solidity variations. The level of secondary vorticity and the intensity of the crossflow at the endwall have been found to be strictly related to the blade loading occurring in the blade entrance region. Heavy changes occur in the spanwise distributions of the pitch averaged loss and of the deviation angle, when incidence or pitch-chord ratio is varied.


2021 ◽  
Vol 143 (4) ◽  
Author(s):  
A. J. Carvalho Figueiredo ◽  
B. D. J. Schreiner ◽  
A. W. Mesny ◽  
O. J. Pountney ◽  
J. A. Scobie ◽  
...  

Abstract Air-cooled gas turbines employ bleed air from the compressor to cool vulnerable components in the turbine. The cooling flow, commonly known as purge air, is introduced at low radius, before exiting through the rim-seal at the periphery of the turbine discs. The purge flow interacts with the mainstream gas path, creating an unsteady and complex flowfield. Of particular interest to the designer is the effect of purge on the secondary-flow structures within the blade passage, the extent of which directly affects the aerodynamic loss in the stage. This paper presents a combined experimental and computational fluid dynamics (CFD) investigation into the effect of purge flow on the secondary flows in the blade passage of an optically accessible one-stage turbine rig. The experimental campaign was conducted using volumetric velocimetry (VV) measurements to assess the three-dimensional inter-blade velocity field; the complementary CFD campaign was carried out using unsteady Reynolds-averaged Navier–Stokes (URANS) computations. The implementation of VV within a rotating environment is a world first and offers an unparalleled level of experimental detail. The baseline flow-field, in the absence of purge flow, demonstrated a classical secondary flow-field: the rollup of a horseshoe vortex, with subsequent downstream convection of a pressure-side and suction-side leg, the former transitioning in to the passage vortex. The introduction of purge, at 1.7% of the mainstream flowrate, was shown to modify the secondary flow-field by enhancing the passage vortex, in both strength and span-wise migration. The computational predictions were in agreement with the enhancement revealed by the experiments.


Author(s):  
Johan Hja¨rne ◽  
Valery Chernoray ◽  
Jonas Larsson

This paper presents experiments and CFD calculations of a Low Pressure Turbine/Outlet Guide Vane (LPT/OGV) equipped with an engine mount recess (a bump) tested in the Chalmers linear LPT/OGV cascade. The investigated characteristics include performance for the design point in terms of total pressure loss and turning as well as a detailed description of the downstream development of the secondary flow field. The numerical simulations are performed for the same inlet conditions as in the test-facility with engine-like properties in terms of Reynolds number, boundary-layer thickness and inlet flow angle. The objective is to validate how accurately and reliably the secondary flow field and losses can be predicted for an LPT/OGV equipped with a bump. Three different turbulent models as implemented in FLUENT, the k-ε realizable model, the kω-SST model and the RSM are validated against detailed measurements. From these results it can be concluded that the kω-SST model predicts both the secondary flow field and the losses most accurately.


2005 ◽  
Vol 127 (4) ◽  
pp. 699-707 ◽  
Author(s):  
J. Schlienger ◽  
A. I. Kalfas ◽  
R. S. Abhari

This paper presents time-resolved flow field measurements at the exit of the first rotor blade row of a two stage shrouded axial turbine. The observed unsteady interaction mechanism between the secondary flow vortices, the rotor wake and the adjacent blading at the exit plane of the first turbine stage is of prime interest and analyzed in detail. The results indicate that the unsteady secondary flows are primarily dominated by the rotor hub passage vortex and the shed secondary flow field from the upstream stator blade row. The analysis of the results revealed a roll-up mechanism of the rotor wake layer into the rotor indigenous passage vortex close to the hub endwall. This interesting mechanism is described in a flow schematic within this paper. In a second measurement campaign the first stator blade row is clocked by half a blade pitch relative to the second stator in order to shift the relative position of both stator indigenous secondary flow fields. The comparison of the time-resolved data for both clocking cases showed a surprising result. The steady flow profiles for both cases are nearly identical. The analysis of the probe pressure signal indicates a high level of unsteadiness that is due to the periodic occurrence of the shed first stator secondary flow field.


2010 ◽  
Vol 132 (8) ◽  
Author(s):  
Reza Baghaei Lakeh ◽  
Majid Molki

A computational investigation is conducted to study the patterns of airflow induced by corona discharge in the cross section of a circular tube. The secondary flow induced by corona wind in various flow passages has been the subject of numerous investigations. The flow patterns are often identified by multiple recirculation bubbles. Such flow patterns have also been anticipated for circular cross sections where the corona discharge is activated by an electrode situated at the center of the cross section. In this investigation, it is shown that, contrary to public perception, a symmetric corona discharge does not generate a secondary flow in circular cross sections. This investigation then proceeds to demonstrate that the flow responsible for thermal enhancements in circular tubes often reported in the published literature is induced only when there is a slight asymmetry in the position of the electrode. The present computations are performed in two parts. In part one, the electric field equations are solved using the method of characteristics. In part two, the flow equations are solved using a finite-volume method. It is shown that the method of characteristics effectively eliminates the dispersion errors observed in other numerical solutions. The present computations show that the flow in the eccentric configuration is characterized by a corona jet that is oriented along the eccentricity direction and two recirculation zones situated on either sides of the jet. In addition to the computational approach, a number of analytical solutions are presented and compared with the computational results.


Author(s):  
Marco Sacchi ◽  
Daniele Simoni ◽  
Marina Ubaldi ◽  
Pietro Zunino ◽  
Stefano Zecchi

The secondary flow field in a large-scale high-pressure turbine cascade with micro-holed endwall cooling has been investigated at the Genova Laboratory of Aerodynamics and Turbomachinery in cooperation with Avio S.p.A in the framework of the European Project AITEB-2. The experimental investigation has been performed for the baseline configuration, with a smooth solid endwall installed, and for the cooled configuration with a micro-holed endwall providing micro-jets ejection from the wall. Two different cooling flow rates were investigated and the experimental results are reported in the paper. Different measurement techniques have been employed to analyze the secondary flow field along the channel and in a downstream tangential plane. Particle Image Velocimetry has been utilized to quantify the blade-to-blade velocity components in a plane located close to the endwall and in the midspan plane. Hot-wire measurements have been performed in a tangential plane downstream of the blade trailing edges in order to survey the micro-jets effects on the secondary flows behavior. The total pressure distributions, for the different blowing conditions, have been measured in the downstream tangential plane by means of a Kiel pneumatic probe. The results, represented in color plots of velocity, pressure loss coefficient and turbulent kinetic energy distributions, allow the identification of the endwall effusion cooling effects on location and strength of the secondary vortical structures. The thermal investigation of the effusion system is discussed in Part 2 of the paper.


1993 ◽  
Vol 115 (3) ◽  
pp. 383-391 ◽  
Author(s):  
A. Perdichizzi ◽  
V. Dossena

This paper describes the results of an experimental investigation of the three-dimensional flow downstream of a linear turbine cascade at off-design conditions. The tests have been carried out for five incidence angles from −60 to +35 deg, and for three pitch-chord ratios: s/c = 0.58, 0.73, 0.87. Data include blade pressure distributions, oil flow visualizations, and pressure probe measurements. The secondary flow field has been obtained by traversing a miniature five-hole probe in a plane located at 50 percent of an axial chord downstream of the trailing edge. The distributions of local energy loss coefficients, together with vorticity and secondary velocity plots, show in detail how much the secondary flow field is modified both by incidence and by cascade solidity variations. The level of secondary vorticity and the intensity of the crossflow at the endwall have been found to be strictly related to the blade loading occurring in the blade entrance region. Heavy changes occur in the spanwise distributions of the pitch-averaged loss and of the deviation angle, when incidence or pitch–chord ratio is varied.


2017 ◽  
Vol 140 (3) ◽  
Author(s):  
Philip Bear ◽  
Mitch Wolff ◽  
Andreas Gross ◽  
Christopher R. Marks ◽  
Rolf Sondergaard

Improvements in turbine design methods have resulted in the development of blade profiles with both high lift and good Reynolds lapse characteristics. An increase in aerodynamic loading of blades in the low-pressure turbine (LPT) section of aircraft gas turbine engines has the potential to reduce engine weight or increase power extraction. Increased blade loading means larger pressure gradients and increased secondary losses near the endwall. Prior work has emphasized the importance of reducing these losses if highly loaded blades are to be utilized. The present study analyzes the secondary flow field of the front-loaded low-pressure turbine blade designated L2F with and without blade profile contouring at the junction of the blade and endwall. The current work explores the loss production mechanisms inside the LPT cascade. Stereoscopic particle image velocimetry (SPIV) data and total pressure loss data are used to describe the secondary flow field. The flow is analyzed in terms of total pressure loss, vorticity, Q-Criterion, turbulent kinetic energy, and turbulence production. The flow description is then expanded upon using an implicit large eddy simulation (ILES) of the flow field. The Reynolds-averaged Navier–Stokes (RANS) momentum equations contain terms with pressure derivatives. With some manipulation, these equations can be rearranged to form an equation for the change in total pressure along a streamline as a function of velocity only. After simplifying for the flow field in question, the equation can be interpreted as the total pressure transport along a streamline. A comparison of the total pressure transport calculated from the velocity components and the total pressure loss is presented and discussed. Peak values of total pressure transport overlap peak values of total pressure loss through and downstream of the passage suggesting that the total pressure transport is a useful tool for localizing and predicting loss origins and loss development using velocity data which can be obtained nonintrusively.


Author(s):  
Ye Da-Jun ◽  
Zhou Li-Wei

For studying the secondary flow in a turbine cascade, the flow field is measured in detail. The measurements of pressure and velocity are taken at various axial planes upstream of, within, and downstream of the cascade by a 4-hole probe. The static pressures are taken on the endwall, suction and pressure surfaces. By treating the experiment data the mechanism of the secondary flow field and the loss model are proposed in this paper.


Author(s):  
Martin von Hoyningen-Huene ◽  
Wolfram Frank ◽  
Alexander R. Jung

Unsteady stator-rotor interaction in gas turbines has been investigated both experimentally and numerically for some years now. Even though the numerical methods are still in development, today they have reached a certain degree of maturity allowing industry to focus on the results of the computations and their impact on turbine design, rather than on a further improvement of the methods themselves. The key to increase efficiency in modern gas turbines is a better understanding and subsequent optimization of the loss-generation mechanisms. A major part of these are the secondary losses. To this end, this paper presents the time-resolved secondary flow field for the two test cases computed, viz the first and the last turbine stage of a modern heavy duty gas turbine. A companion paper referring to the same computations focuses on the unsteady pressure fluctuations on vanes and blades. The investigations have been performed with the flow solver ITSM3D which allows for efficient calculations that simulate the real blade count ratio. This is a prerequisite to simulate the unsteady phenomena in frequency and amplitude properly.


Sign in / Sign up

Export Citation Format

Share Document