Mechanical Model of Neuronal Function Loss

Author(s):  
Guoxin Cao ◽  
You Zhou ◽  
Jeong Soon Lee ◽  
Jung Yul Lim ◽  
Namas Chandra

The mechanism of mild traumatic brain injury (mTBI) is directly related to the relationship between the mechanical response of neurons and their biological/chemical functions since the neuron is the main functional component of brain.1 The hypotheses is that the external mechanical load will firstly cause the mechanical deformation of neurons, and then, when the mechanical deformation of neurons reaches to a critical point (the mechanical deformation threshold), it will initiate the chemical/biological response (e.g. neuronal function loss). Therefore, defining and measuring the mechanical deformation threshold for the neuronal cell injury is an important first step to understand the mechanism of mTBI. Typically, the mechanical response of neurons is investigated based on the deformation of in vitro model, in which the neurons are cultured on the elastic substrate (e.g. PDMS membranes). The elastic membrane is deformed by the external load, e.g. equibiaxial stretching. The substrate deformation is considered to be the deformation of neurons since the substrate is several orders stiffer than the neurons and the neurons are perfectly bonded with the substrate. The fluoresce method is typically used to test the cell injury, e.g. the cell vitality and the neuron internal ROS level.1, 2

Author(s):  
Todd D. Courtney ◽  
Jun Liao ◽  
William R. Wagner ◽  
Michael S. Sacks

For most tissue engineering applications that seek to generate tissue de novo, the scaffold is the first step in a series of important developmental considerations. Whether synthetic or natural, scaffolds developed for immediate in vivo use must have mechanical properties comparable to the native tissue for at least the minimum time necessary for the accompanying seeded cells, and eventual cells that migrate in, to lay down an equivalent supporting matrix. Scaffolds developed for the purpose of growing a tissue in vitro, with eventual in vivo use, need not necessarily meet these mechanical requirements. However, to better develop new tissues in bioreactors or in vivo, it is pertinent to understand how the fiber network changes under some regimen of mechanical load, in essence to understand what the cell witnesses within the scaffold. Extending our previous work, which focused on measuring and modeling the mechanical response of electrospun poly ester urethane urea (es-PEUU) scaffolds [1], we investigated the intricate and detailed es-PEUU fiber networks that are created during scaffold synthesis and how these networks change under various levels of strain. Specifically, we focused on several scaffold responses to strain: 1) Characteristics of fiber tortuosity, which when increased can yield delayed onset of scaffold stiffness as well as other varying mechanical responses. 2) Fiber splay, which determines the orientation of the all fibers within the scaffold. 3) Local vs global strain analysis to determine whether the scaffolds follow affine or non-affine deformations. 4) Fiber strain, to investigate how increasing levels of scaffold strain are transmitted to local fibers. 5) Changes in fiber tortuosity and overall fiber directions under strain.


2017 ◽  
Vol 2017 ◽  
pp. 1-14 ◽  
Author(s):  
Yu-jie Li ◽  
Wei Zhao ◽  
Xu-jiao Yu ◽  
Feng-xian Li ◽  
Zi-ting Liu ◽  
...  

Bupivacaine has been shown to induce neurotoxicity through inducing excessive reactive oxygen species (ROS), but the underlying mechanism remains unclear. NOX2 is one of the most important sources of ROS in the nervous system, and its activation requires the membrane translocation of subunit p47phox. However, the role of p47phox in bupivacaine-induced neurotoxicity has not been explored. In our in vitro study, cultured human SH-SY5Y neuroblastoma cells were treated with 1.5 mM bupivacaine to induce neurotoxicity. Membrane translocation of p47phox was assessed by measuring the cytosol/membrane ratio of p47phox. The effects of the NOX inhibitor VAS2870 and p47phox-siRNA on bupivacaine-induced neurotoxicity were investigated. Furthermore, the effect of VAS2870 on bupivacaine-induced neurotoxicity was assessed in vivo in rats. All these changes were reversed by pretreatment with VAS2870 or transfection with p47phox-siRNA in SH-SY5Y cells. Similarly, pretreatment with VAS2870 attenuated bupivacaine-induced neuronal toxicity in rats. It is concluded that enhancing p47phox membrane translocation is a major mechanism whereby bupivacaine induced neurotoxicity and that pretreatment with VAS2870 or local p47phox gene knockdown attenuated bupivacaine-induced neuronal cell injury.


2019 ◽  
Vol 98 (12) ◽  
pp. 1386-1396 ◽  
Author(s):  
X. Hong ◽  
S.N. Min ◽  
Y.Y. Zhang ◽  
Y.T. Lin ◽  
F. Wang ◽  
...  

IgG4-related sialadenitis (IgG4-RS) is a newly recognized immune-mediated systemic fibroinflammatory disease that affects salivary glands and leads to hyposalivation. Tumor necrosis factor–α (TNF-α) is a critical proinflammatory cytokine involved in several salivary gland disorders, but its role and mechanism regarding acinar cell injury in IgG4-RS are unknown. Here, we found that TNF-α level was significantly increased in serum and submandibular gland (SMG) of patients and that serum TNF-α level was negatively correlated with saliva flow rate. Ultrastructural observations of IgG4-RS SMGs revealed accumulation of large autophagic vacuoles, as well as dense fibrous bundles, decreased secretory granules, widened intercellular spaces, swollen mitochondria, and expanded endoplasmic reticulum. Expression levels of LC3 and p62 were both increased in patients’ SMGs. TNF-α treatment led to elevated levels of LC3II and p62 in both SMG-C6 cells and cultured human SMG tissues but did not further increase their levels when combined with bafilomycin A1 treatment. Moreover, transfection of Ad-mCherry-GFP-LC3B in SMG-C6 cells confirmed the suppression of autophagic flux after TNF-α treatment. Immunofluorescence imaging revealed that costaining of LC3 and the lysosomal marker LAMP2 was significantly decreased in patients, TNF-α–treated SMG-C6 cells, and cultured human SMGs, indicating a reduction in autophagosome-lysosome fusion. Furthermore, the ratio of pro/mature cathepsin D was elevated in vivo, ex vivo, and in vitro. TNF-α also appeared to induce abnormal acidification of lysosomes in acinar cells, as assessed by lysosomal pH and LysoTracker DND-26 fluorescence intensity. In addition, TNF-α treatment induced transcription factor EB (TFEB) redistribution in SMG-C6 cells, which was consistent with the changes observed in IgG4-RS patients. TNF-α increased the phosphorylation of extracellular signal–regulated kinase (ERK) 1/2, and inhibition of ERK1/2 by U0126 reversed TNF-α–induced TFEB redistribution, lysosomal dysfunction, and autophagic flux suppression. These findings suggest that TNF-α is a key cytokine related to acinar cell injury in IgG4-RS through ERK1/2-mediated autophagic flux suppression.


2021 ◽  
Vol 22 (3) ◽  
pp. 1441
Author(s):  
Antonio Scarano ◽  
Tiziana Orsini ◽  
Fabio Di Carlo ◽  
Luca Valbonetti ◽  
Felice Lorusso

Background—the graphene-doping procedure represents a useful procedure to improve the mechanical, physical and biological response of several Polymethyl methacrylate (PMMA)-derived polymers and biomaterials for dental applications. The aim of this study was to evaluate osseointegration of Graphene doped Poly(methyl methacrylate) (GD-PMMA) compared with PMMA as potential materials for dental implant devices. Methods—eighteen adult New Zealand white male rabbits with a mean weight of approx. 3000 g were used in this research. A total of eighteen implants of 3.5 mm diameter and 11 mm length in GD-PMMA and eighteen implants in PMMA were used. The implants were placed into the articular femoral knee joint. The animals were sacrificed after 15, 30 and 60 days and the specimens were evaluated by µCT and histomorphometry. Results—microscopically, all 36 implants, 18 in PMMA and 18 in DG-PMMA were well-integrated into the bone. The implants were in contact with cortical bone along the upper threads, while the lower threads were in contact with either newly formed bone or with marrow spaces. The histomorphometry and µCT evaluation showed that the GP-PMMA and PMMA implants were well osseointegrated and the bone was in direct contact with large portions of the implant surfaces, including the space in the medullary canal. Conclusions—in conclusion, the results suggest that GD-PMMA titanium surfaces enhance osseointegration in rabbit femurs. This encourages further research to obtain GD-PMMA with a greater radiopacity. Also, further in vitro and vivo animal studies are necessary to evaluate a potential clinical usage for dental implant applications.


2021 ◽  
Vol 22 (13) ◽  
pp. 6785
Author(s):  
Valeria Sogos ◽  
Paola Caria ◽  
Clara Porcedda ◽  
Rafaela Mostallino ◽  
Franca Piras ◽  
...  

Novel psychoactive substances (NPS) are synthetic substances belonging to diverse groups, designed to mimic the effects of scheduled drugs, resulting in altered toxicity and potency. Up to now, information available on the pharmacology and toxicology of these new substances is very limited, posing a considerable challenge for prevention and treatment. The present in vitro study investigated the possible mechanisms of toxicity of two emerging NPS (i) 4′-methyl-alpha-pyrrolidinoexanophenone (3,4-MDPHP), a synthetic cathinone, and (ii) 2-chloro-4,5-methylenedioxymethamphetamine (2-Cl-4,5-MDMA), a phenethylamine. In addition, to apply our model to the class of synthetic opioids, we evaluated the toxicity of fentanyl, as a reference compound for this group of frequently abused substances. To this aim, the in vitro toxic effects of these three compounds were evaluated in dopaminergic-differentiated SH-SY5Y cells. Following 24 h of exposure, all compounds induced a loss of viability, and oxidative stress in a concentration-dependent manner. 2-Cl-4,5-MDMA activates apoptotic processes, while 3,4-MDPHP elicits cell death by necrosis. Fentanyl triggers cell death through both mechanisms. Increased expression levels of pro-apoptotic Bax and caspase 3 activity were observed following 2-Cl-4,5-MDMA and fentanyl, but not 3,4-MDPHP exposure, confirming the different modes of cell death.


2020 ◽  
Vol 54 (01) ◽  
pp. 37-46
Author(s):  
Kristina Friedland ◽  
Giacomo Silani ◽  
Anita Schuwald ◽  
Carola Stockburger ◽  
Egon Koch ◽  
...  

Abstract Background Silexan, a special essential oil from flowering tops of lavandula angustifolia, is used to treat subsyndromal anxiety disorders. In a recent clinical trial, Silexan also showed antidepressant effects in patients suffering from mixed anxiety-depression (ICD-10 F41.2). Since preclinical data explaining antidepressant properties of Silexan are missing, we decided to investigate if Silexan also shows antidepressant-like effects in vitro as well as in vivo models. Methods We used the forced swimming test (FST) in rats as a simple behavioral test indicative of antidepressant activity in vivo. As environmental events and other risk factors contribute to depression through converging molecular and cellular mechanisms that disrupt neuronal function and morphology—resulting in dysfunction of the circuitry that is essential for mood regulation and cognitive function—we investigated the neurotrophic properties of Silexan in neuronal cell lines and primary hippocampal neurons. Results The antidepressant activity of Silexan (30 mg/kg BW) in the FST was comparable to the tricyclic antidepressant imipramine (20 mg/kg BW) after 9-day treatment. Silexan triggered neurite outgrowth and synaptogenesis in 2 different neuronal cell models and led to a significant increase in synaptogenesis in primary hippocampal neurons. Silexan led to a significant phosphorylation of protein kinase A and subsequent CREB phosphorylation. Conclusion Taken together, Silexan demonstrates antidepressant-like effects in cellular as well as animal models for antidepressant activity. Therefore, our data provides preclinical evidence for the clinical antidepressant effects of Silexan in patients with mixed depression and anxiety.


2021 ◽  
Vol 12 (6) ◽  
Author(s):  
Manuel Pedro Jimenez-García ◽  
Antonio Lucena-Cacace ◽  
Daniel Otero-Albiol ◽  
Amancio Carnero

AbstractThe EMX (Empty Spiracles Homeobox) genes EMX1 and EMX2 are two homeodomain gene members of the EMX family of transcription factors involved in the regulation of various biological processes, such as cell proliferation, migration, and differentiation, during brain development and neural crest migration. They play a role in the specification of positional identity, the proliferation of neural stem cells, and the differentiation of certain neuronal cell phenotypes. In general, they act as transcription factors in early embryogenesis and neuroembryogenesis from metazoans to higher vertebrates. The EMX1 and EMX2’s potential as tumor suppressor genes has been suggested in some cancers. Our work showed that EMX1/EMX2 act as tumor suppressors in sarcomas by repressing the activity of stem cell regulatory genes (OCT4, SOX2, KLF4, MYC, NANOG, NES, and PROM1). EMX protein downregulation, therefore, induced the malignance and stemness of cells both in vitro and in vivo. In murine knockout (KO) models lacking Emx genes, 3MC-induced sarcomas were more aggressive and infiltrative, had a greater capacity for tumor self-renewal, and had higher stem cell gene expression and nestin expression than those in wild-type models. These results showing that EMX genes acted as stemness regulators were reproduced in different subtypes of sarcoma. Therefore, it is possible that the EMX genes could have a generalized behavior regulating proliferation of neural crest-derived progenitors. Together, these results indicate that the EMX1 and EMX2 genes negatively regulate these tumor-altering populations or cancer stem cells, acting as tumor suppressors in sarcoma.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Masashi Arita ◽  
Satoshi Watanabe ◽  
Nobumasa Aoki ◽  
Shoji Kuwahara ◽  
Ryo Suzuki ◽  
...  

AbstractCisplatin, one of the most active anticancer agents, is widely used in standard chemotherapy for various cancers. Cisplatin is more poorly tolerated than other chemotherapeutic drugs, and the main dose-limiting toxicity of cisplatin is its nephrotoxicity, which is dose-dependent. Although less toxic methods of cisplatin administration have been established, cisplatin-induced nephrotoxicity remains an unsolved problem. Megalin is an endocytic receptor expressed at the apical membrane of proximal tubules. We previously demonstrated that nephrotoxic drugs, including cisplatin, are reabsorbed through megalin and cause proximal tubular cell injury. We further found that cilastatin blocked the binding of cisplatin to megalin in vitro. In this study, we investigated whether cilastatin could reduce cisplatin-induced nephrotoxicity without influencing the antitumor effects of cisplatin. Nephrotoxicity was decreased or absent in mice treated with cisplatin and cilastatin, as determined by kidney injury molecule-1 staining and the blood urea nitrogen content. Combined with cilastatin, a twofold dose of cisplatin was used to successfully treat the mice, which enhanced the antitumor effects of cisplatin but reduced its nephrotoxicity. These findings suggest that we can increase the dose of cisplatin when combined with cilastatin and improve the outcome of cancer patients.


2021 ◽  
Vol 22 (4) ◽  
pp. 1725
Author(s):  
Diego Delgado ◽  
Ane Miren Bilbao ◽  
Maider Beitia ◽  
Ane Garate ◽  
Pello Sánchez ◽  
...  

Platelet-rich plasma (PRP) is a biologic therapy that promotes healing responses across multiple medical fields, including the central nervous system (CNS). The efficacy of this therapy depends on several factors such as the donor’s health status and age. This work aims to prove the effect of PRP on cellular models of the CNS, considering the differences between PRP from young and elderly donors. Two different PRP pools were prepared from donors 65–85 and 20–25 years old. The cellular and molecular composition of both PRPs were analyzed. Subsequently, the cellular response was evaluated in CNS in vitro models, studying proliferation, neurogenesis, synaptogenesis, and inflammation. While no differences in the cellular composition of PRPs were found, the molecular composition of the Young PRP showed lower levels of inflammatory molecules such as CCL-11, as well as the presence of other factors not found in Aged PRP (GDF-11). Although both PRPs had effects in terms of reducing neural progenitor cell apoptosis, stabilizing neuronal synapses, and decreasing inflammation in the microglia, the effect of the Young PRP was more pronounced. In conclusion, the molecular composition of the PRP, conditioned by the age of the donors, affects the magnitude of the biological response.


Sign in / Sign up

Export Citation Format

Share Document