Design Optimization of Turbo-Machinery Components With Independent FEA and CFD Tools in an Optimization Software Environment: A Mid-Span Shroud Ring Study Case

Author(s):  
Yuan-Ting Wu ◽  
Christian K. Funk ◽  
Pei-feng Hsu ◽  
Jerome Le Moine ◽  
Ran Zhou ◽  
...  

Shrouds are important for damping vibrations in gas turbine blades. In modern industrial high-output, high-efficiency engines, long turbine blades can require the use of a mid-span or partial-span damping ring. However, the inclusion of a mid-span damping shroud, or “snubber,” can have negative effects on the aerodynamic performance of the gas turbine stage and engine. Therefore, a method of iterative study and optimization was applied to minimize the drag force caused by the snubber, while maximizing the structural life of the blade. The approach used integrated design environment software to perform parametric studies of the design space in preparation for optimization of the blade snubber geometry. The drivers employed in Isight 4.0/4.5 [9] optimization software carried out the parametric study and reported the results to the designer. Considering these results, the designer chose the initial seeding geometry of the optimization driver which greatly reduced analysis time and the time required to reach the design objectives. This approach provides an integrated design workflow and facilitates parametric studies of advanced gas turbine blade component geometry, and the optimization of the component to meet targets of minimized aerodynamic drag force and maximized low-cycle fatigue life, goals crucial to the development of an advanced and efficient power generation gas turbine.

Author(s):  
Firat Irmak ◽  
Navindra Wijeyeratne ◽  
Taejun Yun ◽  
Ali Gordon

Abstract In the development and assessment of critical gas turbine components, simulations have a crucial role. An accurate life prediction approach is needed to estimate lifespan of these components. Nickel base superalloys remain the material of choice for gas turbine blades in the energy industry. These blades are required to withstand both fatigue and creep at extreme temperatures during their usage time. Nickel-base superalloys present an excellent heat resistance at high temperatures. Presence of chromium in the chemical composition makes these alloys highly resistant to corrosion, which is critical for turbine blades. This study presents a flexible approach to combine creep and fatigue damages for a single crystal Nickel-base superalloy. Stress and strain states are used to compute life calculations, which makes this approach applicable for component level. The cumulative damage approach is utilized in this study, where dominant damage modes are capturing primary microstructural mechanism associated with failure. The total damage is divided into two distinctive modules: fatigue and creep. Flexibility is imparted to the model through its ability to emphasize the dominant damage mechanism which may vary among alloys. Fatigue module is governed by a modified version of Coffin-Manson and Basquin model, which captures the orientation dependence of the candidate material. Additionally, Robinson’s creep rupture model is applied to predict creep damage in this study. A novel crystal visco-plasticity (CVP) model is used to simulate deformation of the alloy under several different types of loading. This model has capability to illustrate the temperature-, rate-, orientation-, and history-dependence of the material. A user defined material (usermat) is created to be used in ANSYS APDL 19.0, where the CVP model is applied by User Programmable Feature (UPF). This deformation model is constructed of a flow rule and internal state variables, where the kinematic hardening phenomena is captured by back stress. Octahedral, cubic and cross slip systems are included to perform simulations in different orientations. An implicit integration process that uses Newton-Raphson iteration scheme is utilized to calculate the desired solutions. Several tensile, low-cycle fatigue (LCF) and creep experiments were conducted to inform modeling parameters for the life prediction and the CVP models.


Author(s):  
Reiner Anton ◽  
Brigitte Heinecke ◽  
Michael Ott ◽  
Rolf Wilkenhoener

The availability and reliability of gas turbine units are critical for success to gas turbine users. Advanced hot gas path components that are used in state-of-the-art gas turbines have to ensure high efficiency, but require advanced technologies for assessment during maintenance inspections in order to decide whether they should be reused or replaced. Furthermore, advanced repair and refurbishment technologies are vital due to the complex nature of such components (e.g., Directionally Solidified (DS) / Single Crystal (SC) materials, thin wall components, new cooling techniques). Advanced repair technologies are essential to allow cost effective refurbishing while maintaining high reliability, to ensure minimum life cycle cost. This paper will discuss some aspects of Siemens development and implementation of advanced technologies for repair and refurbishment. In particular, the following technologies used by Siemens will be addressed: • Weld restoration; • Braze restoration processes; • Coating; • Re-opening of cooling holes.


Author(s):  
Yuan-Ting Wu ◽  
Jerome Le Moine ◽  
Pei-feng Hsu ◽  
Christian K. Funk ◽  
C. Subramanian ◽  
...  

In modern industrial high-output, high-efficiency engines, long turbine blades can require the use of a mid-span or partial-span damping ring for damping vibrations. However, the inclusion of a mid-span damping shroud, or “snubber,” can have negative effects on the aerodynamic performance of the gas turbine stage and engine. Therefore, a method of coupling two independent computational fluid dynamics and finite element structure software tools under an optimization environment was applied to minimize the drag force caused by the snubber, while maximizing the structural life of the blade. Following the earlier two-parameter (the shroud width and taper ratio) shroud geometry study by the authors, this study extends to the five-parameter geometry model to approach a higher performance design with controllable computational time as well. For the optimized turbine blade shroud in this case, 14.5% reduction of the maximum material stress and 22.6% decrease in the drag force from original snubber design has been accomplished.


Author(s):  
Julie McGraw ◽  
Reiner Anton ◽  
Christian Ba¨hr ◽  
Mary Chiozza

In order to promote high efficiency combined with high power output, reliability, and availability, Siemens advanced gas turbines are equipped with state-of-the-art turbine blades and hot gas path parts. These parts embody the latest developments in base materials (single crystal and directionally solidified), as well as complex cooling arrangements (round and shaped holes) and coating systems. A modern gas turbine blade (or other hot gas path part) is a duplex component consisting of base material and coating system. Planned recoating and repair intervals are established as part of the blade design. Advanced repair technologies are essential to allow cost-effective refurbishing while maintaining high reliability. This paper gives an overview of the operating experience and key technologies used to repair these parts.


Author(s):  
Richard Curtis ◽  
Warren Miglietti ◽  
Michael Pelle

In recent years, orders for new land-based gas turbines have skyrocketed, as the planning, construction and commissioning of new power plants based on combined-cycle technology advances at an unprecedented pace. It is estimated that 65–70% of these new equipment orders is for high-efficiency, advanced “F”, “G” or “H” class machines. The W501F/FC/FD gas turbine, an “F” class machine currently rated at 186.5 MW (simple cycle basis), has entered service in significant numbers. It is therefore of prime interest to owners/operators of this gas turbine to have sound component refurbishment capabilities available to support maintenance requirements. Processes to refurbish the Row 1 turbine blade, arguably the highest “frequency of replacement” component in the combustion and hot sections of the turbine, were recently developed. Procedures developed include removal of brazed tip plates, coating removal, rejuvenation heat treatment, full tip replacement utilizing electron beam (EB) and automated micro-plasma transferred arc (PTA), joining methods, proprietary platform crack repair and re-coating. This paper describes repair procedure development and implementation for each stage of the process, and documents the metallurgical and mechanical characteristics of the repaired regions of the component.


Author(s):  
Gianluca de Arcangelis

Abstract Traditional air filtration systems for Gas Turbine Naval applications consist of 3 stages: 1st vane separator + pocket filter + 2nd vane separator. The 2nd vane separator is required to drain out droplets formed by the traditional pocket filter during its coalescing function. Further to technological advancements in the water repellency of filter media, as well as leak-free techniques, it is now possible to implement a pocket filter that avoids leaching water droplets downstream. This enables the elimination of the 3rd stage vane separator in the air filtration system. The result is a suitable 2-stage air filtration system. The elimination of the 3rd stage vane separator provides the obvious following advantages: • Reduced pressure drop • Reduced weight • Reduced foot-print • Reduced cost Latest technological advancements in water repellency and high efficiency melt-blown media also allow the attainment of higher performance such as: • Increased efficiency against water droplet and salt in wet state • Increased efficiency against dry salt and dust This results in higher cleanliness of the Gas Turbines with benefits in terms of compressor fouling, compressor blades corrosion and turbine blades hot erosion. Higher performance also results in simplified maintenance as technicians need only focus on the replacement of the elements as opposed to the cleaning and overhauling of the intake duct. The paper goes through the engineering challenges of evolving from a 3-stage to 2-stage filtration system. The paper provides data from testing at independent laboratories with results that back the claims. Furthermore, reference is made to Offshore Oil & Gas installations and testing that have proven successful with independently measured data.


Author(s):  
Paolo Del Turco ◽  
Michele D’Ercole ◽  
Nicola Pieroni ◽  
Massimiliano Mariotti ◽  
Francesco Gamberi ◽  
...  

Major limitations for power turbine blades for oil & gas and industrial applications are Creep and HCF (High Cycle Fatigue). Power Turbine blades, being normally uncooled, are generally not affected by high temperature gradients; therefore LCF (Low Cycle Fatigue) doesn’t constitute their main limiting life factor. If creep is often not a limiting factor for aircraft engines blades, where inspection, maintenance and replacement intervals are more frequent, it becomes one of the key drivers for an industrial gas turbine where required flow path components life is at least one order larger. To avoid HCF failures, it would be desirable to avoid stimuli crossing natural frequencies in the entire operative range. However, due to the wide operative range and high number of stimuli present, the avoidance of potential resonance crossings is often not possible. This is the one of the reasons why a prototype validation campaign is usually performed, where, during the test, vibratory stress levels are compared to HCF endurance limits. This paper describes the processes used in GE Infrastructure Oil&Gas to verify, design, develop and test a PT (Power Turbine) blade for an upgraded 35 MW-class aero-derivative gas turbine. Initial assessment phases, new material selection, concurrent engineering efforts, bench testing characterization and final validation on FETT (First Engine to Test) are described. A particular focus is given to the analytical tools (i.e. modal cyclic symmetry analysis) used during the design phase and validation tests.


Author(s):  
Mauro Filippini ◽  
Stefano Foletti ◽  
Giuseppe Pasquero

In gas turbine engines for aerospace propulsion, the application of coatings on HP and LP stage blading where the highest temperatures are experienced is a common practice to prevent environmental degradation. However, since the strength of the coating is lower than that of the substrate material, upon loading the static strength of the coating may be exceeded and coating cracking may occur. In order to assess the effect of cracking in the coating on polycrystalline nickel superalloy MAR-M002, a number of combined cycle fatigue (CCF) and low cycle fatigue (LCF) tests with and without dwell have been carried out, at temperatures up to 870 °C. In order to experimentally assess the potential detrimental effect of coating cracking, controlled cracking in the coating prior to fatigue testing has been generated by using a special procedure. CCF tests have carried out by superimposing to strain controlled zero to maximum LCF cycles with dwell time stress controlled smaller HCF cycles, simulating the high loading ratio vibrations occurring in the blades. The loading mode applied in the CCF tests, even if much simpler than effective service conditions, is sufficiently representative of the loading experienced by the materials in correspondence of critical geometrical features of the turbine blades, where HCF amplitudes due to blade vibrations are superimposed to major (ground-air-ground) LCF cycles occurring during the regular service of the gas turbine engines. Comparison of the CCF and of the LCF tests with dwell with conventional LCF tests is presented herein, with special consideration of the effect of coating cracking.


Sign in / Sign up

Export Citation Format

Share Document