Handling and Primary Ride Comfort Development in Early Design Stage by Means of 1D Modeling Approach and Multi Attribute Optimization Process

Author(s):  
Stefano Alneri ◽  
Paolo di Carlo ◽  
Alessandro Toso ◽  
Stijn Donders

Today the automotive market is ever more competitive and vehicles must satisfy the requirements of the customers in all respects: handling, comfort, acoustics, fuel economy, etc. Therefore OEMs have to launch innovative products in a short development timeline: the time to market (TTM) of new vehicles has continually decreased and nowadays the developing process of a new car is completed in less years than in the past. This scenario emphasizes the role of CAE in the vehicle design engineering design and the necessity of exploiting its potentialities, in order to shorten the TTM and to reduce the impact of experimental tests on it. In this context a step-by-step approach with multi-physics 1D environment such as LMS Imagine. Lab AMESim is proposed in order to monitor vehicle performances in all the design stages, thanks to the employment of models with increasing complexity. In addition the ultimate step can be employed for performing a multi attribute optimization on vehicle performance metrics in order to find the best attributes balancing and to pass the preliminary recommendations to the design with a considerable time-saving respect to 3D MBS models. This paper briefly describes the process for building 1D models with LMS Imagine.Lab AMESim and moreover it shows the definition of a multi attribute optimization algorithm in terms of handling performances with the most complex model.

2021 ◽  
pp. 94-103
Author(s):  
Jiangtao Du ◽  
Steve Sharples

The deposition of air pollutants on glazing can significantly affect the daylight transmittance of building fenestration systems in urban areas. This study presents a simulation analysis of the impact of air pollution and glazing visual transmittance on indoor daylight availability in an open-plan office in London. First, the direct links between glazing visual transmittance and daylighting conditions were developed and assessed. Second, several simple algorithms were established to estimate the loss of daylight availability due to the pollutant deposition at the external surface of vertical glazing. Finally, some conclusions and design strategies to support facade planning at the early design stage of an urban building project were developed.


Author(s):  
Thomas Oberleiter ◽  
Björn Heling ◽  
Benjamin Schleich ◽  
Kai Willner ◽  
Sandro Wartzack

Real components always deviate from their ideal dimensions. This makes every component, even a serial production, unique. Although they look the same, differences can always be observed due to different scattering factors and variations in the manufacturing process. All these factors inevitably lead to parts that deviate from their ideal shape and, therefore, have different properties than the ideal component. Changing properties can lead to major problems or even failure during operation. It is necessary to specify the permitted deviations to ensure that every single product nevertheless meets its technical requirements. Furthermore, it is necessary to estimate the consequences of the permitted deviations, which is done via tolerance analysis. During this process, components are assembled virtually and varied with the uncertainties specified by the tolerances. A variation simulation is one opportunity to calculate these effects for geometric deviations. Since tolerance analysis enables engineers to identify weak points in an early design stage, it is important to know the contribution that every single tolerance has on a certain quality-relevant characteristic, to restrict or increase the correct tolerances. In this paper, a fuzzy-based method to calculate the sensitivity is introduced and compared with the commonly used extended Fourier amplitude sensitivity test (EFAST) method. Special focus of this work is the differentiation of the sensitivity for the total system and the sensitivities for the subsystems defined by the α-cuts of the fuzzy numbers. It discusses the impact of the number of evaluations and nonlinearity on sensitivity for EFAST and the fuzzy-based method.


Author(s):  
Shukui Liu ◽  
Apostolos Papanikolaou

An attempt was made to extend and further tune the existing formula for approximating the added resistance in head seas to cover a wider range of speed and to account the impact of loading conditions; a new parameter based on B/ T was introduced after conducting extensive parametric study to capture the influence of draft on the added resistance; the trim effect has also been investigated; Furthermore, the draft effect on the added resistance due to diffraction is further tuned and simplified. The derived formula uses only a few input, including only some ship dimensions to yield an estimation of the added resistance of ships in regular waves. Numerical results show that the added resistance of various ships in head seas at low speeds, as well as the added resistance of tankers in ballast condition and cruise ships, can be properly captured by the new formula. Hence, it meets the demand of fast examination of the minimum power; it can also be used in the early design stage of a ship for power estimation.


Author(s):  
Mahendran Maliapen ◽  
Alan Gillies

This paper uses simulation modelling techniques and presents summarized model outputs using the balanced scorecard approach. The simulation models have been formulated with the use of empirical health, clinical and financial data extracted from clinical data warehouses of a healthcare group. By emphasising the impact of strategic financial and clinical performance measures on healthcare institutions, it is argued that hospitals, in particular, need to re-focus cost-cutting efforts in areas that do not impact clinicians, patient satisfaction or quality of care. The authors have added a real time component to business activity monitoring with the executive dashboards shown as graphs in this paper. This study demonstrates that it is possible to understand health policy interactions and improve hospital performance metrics through evaluation using balanced scorecards and normalized output data. Evidence from this research shows that the hospital executives involved were enthusiastic about the visual interactive interface that provides the transparency needed to isolate policy experimentation from complex model structures that map strategic behaviour.


2017 ◽  
Vol 3 ◽  
Author(s):  
Youyi Bi ◽  
Sixuan Li ◽  
David Wagner ◽  
Tahira Reid

Automakers are interested in creating optimal car shapes that can visually convey environmental friendliness and safety to customers. This research examined the influence of vehicle form on perceptions based on two subjective inference measures: safety and perceived environmental friendliness (PEF). A within-subjects study was conducted in 2009 (Study 1) to study how people would evaluate 20 different vehicle silhouettes created by designers in industry. Participants were asked to evaluate forms on several scales, including PEF, safety, inspired by nature, familiarity, and overall preference. The same study was repeated in 2016 (Study 2). The results from the first study showed an inverse relationship between PEF and perceptions of safety. That is, vehicles that appeared to be safe were perceived to be less environmentally friendly, and vice versa. Participants in the second study showed a similar trend, but not as strongly as the 2009 participants. Several shape variables were identified to be correlated with participants’ PEF and safety ratings. The changes in the trend of participants’ evaluations over seven years were also discussed. These results can provide designers with insights into how to create car shapes with balanced PEF and safety in the early design stage.


Author(s):  
Marcos Esterman ◽  
Krishna Kamath

While Design for Assembly (DFA) has been a useful design tool, it is not explicitly linked to actual manufacturing line performance. The motivation for this research came from the desire to link DFA directly to line balance and cycle time performance. The natural question that arose was whether these issues could be considered at the design stage by using the metrics that are derived from a DFA analysis. It is known that the time required to assemble a product can be estimated from both a DFA analysis and from a manufacturing analysis. This work links these two analysis methods so that the manufacturing parameters can be estimated and used to guide the design of a product. Starting with a DFA analysis, the minimum number of workstations needed to balance the line that will maintain the production rate (takt time) and precedence constraints is determined. Then the precedence constraints are systematically relaxed in order to generate measures on a component-by-component basis as to the impact it could have on reducing cycle time and improving line balancing performance. These measures, coupled with an understanding of precedence types, are used to identify design improvements to a product. To illustrate how product designer can consider assembly line performance issues during the design stage of the product, the methodology has been applied to an ABS brake assembly.


Author(s):  
Georgios Papaioannou ◽  
Dimitrios Koulocheris ◽  
Efstathios Velenis

In this work, a novel distribution-based control strategy of semi-active vehicle suspensions is tested under different conditions. The novelty lies in the use of an appropriate threshold in the operational condition of the control algorithm, with which the operational conditions severity is quantified and the state of the damper is controlled according to the magnitude of the operational conditions and not their sign. The value of the threshold depends on the vibrations induced to the sprung mass by the road profile. In order to be evaluated, the operational conditions of the algorithm are fitted to a t-student distribution. The cumulative distribution function of this distribution is used in order to decrease the fraction of the sample operating with the damper’s stiff state. The strategy is applied to traditional SH control algorithms and is tested using a quarter car model excited by different road excitations. A sensitivity analysis for various threshold values is performed, investigating the impact of adopting the cumulative distribution functioned (CDF) controller to various performance metrics. The results illustrate an increase of up to 13% in the ride comfort of the passengers and increase of 6% in the road holding of the vehicle. Both are achieved by minimizing the switches of the damping ratio up to 80%.


2011 ◽  
Vol 02 (02) ◽  
pp. 128-142 ◽  
Author(s):  
L. Fernandez-Luque ◽  
T. Tøllefsen ◽  
E. Brox

Summary Background: There is an increasing interest in health games including simulation tools, games for specific conditions, persuasive games to promote a healthy life style or exergames where physical exercise is used to control the game. Objective: The objective of the article is to review current literature about available health games and the impact related to game design principles as well as some educational theory aspects. Methods: Literature from the big databases and known sites with games for health has been searched to find articles about games for health purposes. The focus has been on educational games, persuasive games and exergames as well as articles describing game design principles. Results: The medical objectives can either be a part of the game theme (intrinsic) or be totally dispatched (extrinsic), and particularly persuasive games seem to use extrinsic game design. Peer support is important, but there is only limited research on multiplayer health games. Evaluation of health games can be both medical and technical, and the focus will depend on the game purpose. Conclusion: There is still not enough evidence to conclude which design principles work for what purposes since most of the literature in health serious games does not specify design methodologies, but it seems that extrinsic methods work in persuasion. However, when designing health care games it is important to define both the target group and main objective, and then design a game accordingly using sound game design principles, but also utilizing design elements to enhance learning and persuasion. A collaboration with health professionals from an early design stage is necessary both to ensure that the content is valid and to have the game validated from a clinical viewpoint. Patients need to be involved, especially to improve usability. More research should be done on social aspects in health games, both related to learning and persuasion.


Author(s):  
Qiang Chen ◽  
Xian-Xu Frank Bai ◽  
An-Ding Zhu ◽  
Di Wu ◽  
Xue-Cai Deng ◽  
...  

Handing stability and ride comfort, basic indexes to evaluate vehicle performance, usually cannot be guaranteed simultaneously. Given the contradiction between the two indexes, a new type of suspension – balanced suspension, has attracted wide attentions for years. Balanced suspensions are a device that converts the movement of a wheel into force at the other wheels through a mechanical or hydraulic structure, which might improve ride comfort/handling stability while maintaining the handling stability/ride comfort. As the hydraulically interconnected suspension and hydro-pneumatic suspension show disadvantages of high cost and high installation space requirement, a specific balanced suspension which is connected through a mechanical structure is presented and thoroughly analyzed in this paper. The balanced suspension connects the front and rear suspension motion of the vehicle by means of the lever mechanical connection structure to obtain the comprehensive performance of enhanced vehicle’s ride comfort and handling stability. The half-vehicle mathematical model for ride comfort and the multi-body dynamics model for handling stability are established for the comparison and analysis of the dynamic performance of vehicle when the balanced suspension on and off. In addition, experimental tests of the modified vehicle prototypes when the balanced suspension on and off on the ride comfort and handling stability are conducted. Similar with the simulation results, experimental tests show that the handling stability is nearly unchanged while the ride comfort improves about 15.9% when the balanced suspension is on.


Author(s):  
Sean C. Hunter ◽  
David C. Jensen ◽  
Irem Y. Tumer ◽  
Christopher Hoyle

For many complex engineered systems, a risk informed approach to design is critical to ensure both robust safety and system reliability. Early identification of failure paths in complex systems can greatly reduce the costs and risks absorbed by a project in future failure mitigation strategies. By exploring the functional effect of potential failures, designers can identify preferred architectures and technologies prior to acquiring specific knowledge of detailed physical system forms and behaviors. Early design-stage failure analysis is enabled by model-based design, with several research methodologies having been developed to support this design stage analysis through the use of computational models. The abstraction necessary for implementation at the design stage, however, leads to challenges in validating the analysis results presented by these models. This paper describes initial work on the comparison of models at varying levels of abstraction with results obtained on an experimental testbed in an effort to validate a function-based failure analysis method. Specifically, the potential functional losses of a simple rover vehicle are compared with experimental findings of similar failure scenarios. Expected results of the validation procedure suggest that a model’s validity and quality are a function of the depth to which functional details are described.


Sign in / Sign up

Export Citation Format

Share Document