Effect of Ni-Coated Carbon Nanotubes on the Creep Behavior of Sn-Ag-Cu Solder by Nanoindentation

Author(s):  
J. Wei ◽  
Y. D. Han ◽  
H. Y. Jing ◽  
S. M. L. Nai ◽  
L. Y. Xu

In the present study, the powder metallurgy route was used to successfully incorporate Ni-coated carbon nanotubes into Sn-Ag-Cu solder, to form a nanocomposite solder. Nanoindentation tests were performed on both composite and Sn-Ag-Cu solder samples to investigate their creep behaviour at room temperature. Characterization results revealed that with the addition of Ni-coated carbon nanotubes, the creep behaviour of composite solder improved significantly as compared to that of the unreinforced solder alloy. Moreover, increasing the maximum load from 20 mN to 100 mN increased the percentage reduction in creep strain rate from 4% to 28%, for the composite compared to its monolithic counterpart after 300 s of holding.

2010 ◽  
Vol 09 (04) ◽  
pp. 283-287 ◽  
Author(s):  
Y. D. HAN ◽  
H. Y. JING ◽  
S. M. L. NAI ◽  
L. Y. XU ◽  
C. M. TAN ◽  
...  

In the present study, 0.05 wt.% of Ni -coated multi-walled carbon nanotubes ( Ni -CNTs) were successfully incorporated into the 95.8Sn–3.5Ag–0.7Cu solder using the powder metallurgy technique, to synthesize a new lead-free composite solder. Its mechanical property (in terms of hardness) was investigated at room temperature using the nanoindentation method. The results revealed that the nanoindentation hardness increased by 14.3% with the incorporation of 0.05 wt.% of Ni -coated CNTs. This observation is in good agreement with the microhardness test results. Moreover, the addition of Ni -CNTs improved the creep resistance of the composite solder. The test results established that nanotechnology coupled with composite technology in electronics solders can result in the enhancement of mechanical properties. These advanced interconnect materials will thus benefit the microelectronics assembly and packaging industry.


2011 ◽  
Vol 23 (5) ◽  
pp. 1108-1115 ◽  
Author(s):  
Y. D. Han ◽  
H. Y. Jing ◽  
S. M. L. Nai ◽  
L. Y. Xu ◽  
C. M. Tan ◽  
...  

2012 ◽  
Vol 626 ◽  
pp. 791-796 ◽  
Author(s):  
Mohd Arif Anuar Mohd Salleh ◽  
Muhammad Hafiz Hazizi ◽  
Mohd Mustafa Al Bakri Abdullah ◽  
N.Z. Noriman ◽  
Ramani Mayapan ◽  
...  

Researches and studies on composite solder have been done by many researchers in an effort to develop viable lead-free solders which can replace the conventional lead-based solders as lead is considered as toxic. Solder materials developed by composite approach showed improvement in their properties and importantly it improved their service performance when compared with solder materials developed by other methods. This paper reviews the solder properties of various types of composite lead-free solder that were fabricated via powder metallurgy route. The fabrication processes of the composite solder material by using powder metallurgy route which involved mixing the powder homogeneously, compaction of the mixed powder and sintering the green body were discussed in detail. The types of reinforcements used in order to enhance its properties and the roles of the reinforcement used were also discussed in detail. Properties of a desirable composite solder and the effects of the reinforcement addition to the composite solder microstructure, changes in its wettability and improvement of its mechanical properties were later discussed in this paper. In conclusion, by reviewing various research advances in composite solder material, a solder material with high solder joint reliability at elevated temperature have yet to be found. Thus, a novel composite solder material with higher solder joint reliability at room and elevated temperature was proposed.


Author(s):  
Nan Jiang ◽  
Liang Zhang ◽  
Kai-Kai Xu ◽  
Mu-Lan Li ◽  
Feng-Jiang Wang

In this work, SiC nanowires (SiC NWs) reinforced SBG (Sn-58Bi-0.05GNSs) composite solder was prepared using powder metallurgy route. The effect of SiC NWs on melting temperature, wetting behavior, shear properties, microstructure of the prepared solder joints and interfacial reaction were studied in detail. Results reveal that incorporating SiC NWs can develop the wetting behavior and shear properties of solder joint but has a little effect on melting temperature. The microstructure of solder is refined markedly with the addition of SiC NWs, which is one of the reasons for the increase in the shear strength of the solder joints. Additionally, the dimension of Cu6Sn5 IMC grains diminishes with the doping of SiC NWs, which resulted in the thinning of Cu6Sn5 IMC layer. Thence, the addition of SiC NWs may be an effective way to improve the reliability of solder joints.


2009 ◽  
Vol 289-292 ◽  
pp. 127-136
Author(s):  
P. Pérez ◽  
K. Milicka ◽  
Jose Maria Badía ◽  
G. Garcés ◽  
J.M. Antoranz ◽  
...  

The thermal stability and creep behaviour of MgNi2Y1CeMM1 and MgNi3Y1.5CeMM1.5 alloys have been investigated at 523 and 623 K. Both alloys were processed by a powder metallurgy route involving rapid solidification of powders, cold isostatic pressing and extrusion at 673 K. The microstructure of both alloys was studied in the as-extrusion condition and after thermal treatments at 523 and 623 K up to 500 h. Mechanical characterization was carried out by hardness measurements in samples annealed at 523 and 623 K and stepwise stress compressive creep tests at these temperatures. Results have shown long-term stability of the microstructure after annealing at 523 K in both alloys and hardness values remained constant along all treatment. After treatment at 623 K, however, the microstructure of both alloys remained relatively stable and a decrease in hardness was noticed after 6 h. Creep behaviour of both alloys was very similar. The stress dependences of the creep rate can be well described by modified Garofalo sinh relationship. Activation energies for creep, practically twice of the activation enthalpy of lattice diffusion for pure magnesium (135 kJ mol-1), have been obtained. Therefore, no direct evidence of the controlling role of diffusion processes can be obtained from these experiments.


2012 ◽  
Vol 554-556 ◽  
pp. 661-666
Author(s):  
Kan Kan ◽  
Chun Sheng Chen ◽  
Guang Xin Zhang ◽  
Chao Jiang ◽  
Li Li ◽  
...  

The nanocomposite of polyaniline (PAni)-coated Carbon nanotubes (CNT) for NH3gas sensing application are presented in this paper. The nanorods of PAni/CNT nanocomposite was synthesized by chemical oxidative polymerization of aniline using ammonium persulfate in acidic medium. The aniline was adsorbed in CNT by vacuum absorption method. The morphologies and properties of the nanocomposite have been characterized by SEM, XRD and FTIR respectively. Thin sensor of PAni/CNT nanorods was prepared by spin coating method. Finally, the response of these composite films for NH3gas was evaluated by monitoring the change in electrical resistance at room temperature. With compared to the pure PAni and CNT, tSubscript texthe nanorods of PAni/CNT composite films show a higher sensitivity.


Author(s):  
S. M. L. Nai ◽  
J. Wei ◽  
M. Gupta

In the present study, 2 different composite solder systems were successfully synthesized using powder metallurgy route consisting of: blending, compaction, sintering and extrusion. The Sn-Ag-Cu based composite solders were reinforced with namely, titanium diboride (TiB2) particulates and multi-walled carbon nanotubes (MWCNTs). The extruded materials were then characterized for their electrical resistivity values using the four-point probe setup from Jandel. The electrical resistivity results showed no degradation of electrical performance of the composite solders, except at high volume percentages of TiB2 addition. This signified that with judicious selection of the reinforcement type and the amount of reinforcement addition, these advanced interconnect materials will benefit industries like the microelectronics flip chip assembly and packaging, MEMS systems and NEMS systems.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Azim Ataollahi Oshkour ◽  
Sumit Pramanik ◽  
Seyed Farid Seyed Shirazi ◽  
Mehdi Mehrali ◽  
Yat-Huang Yau ◽  
...  

This study investigated the impact of calcium silicate (CS) content on composition, compressive mechanical properties, and hardness of CS cermets with Ti-55Ni and Ti-6Al-4V alloys sintered at 1200°C. The powder metallurgy route was exploited to prepare the cermets. New phases of materials of Ni16Ti6Si7, CaTiO3, and Ni31Si12appeared in cermet of Ti-55Ni with CS and in cermet of Ti-6Al-4V with CS, the new phases Ti5Si3, Ti2O, and CaTiO3, which were emerged during sintering at different CS content (wt%). The minimum shrinkage and density were observed in both groups of cermets for the 50 and 100 wt% CS content, respectively. The cermets with 40 wt% of CS had minimum compressive Young’s modulus. The minimum of compressive strength and strain percentage at maximum load were revealed in cermets with 50 and 40 wt% of CS with Ti-55Ni and Ti-6Al-4V cermets, respectively. The cermets with 80 and 90 wt% of CS showed more plasticity than the pure CS. It concluded that the composition and mechanical properties of sintered cermets of Ti-55Ni and Ti-6Al-4V with CS significantly depend on the CS content in raw cermet materials. Thus, the different mechanical properties of the cermets can be used as potential materials for different hard tissues replacements.


Sign in / Sign up

Export Citation Format

Share Document