Open Design of High Pressure Ratio Radial-Inflow Turbine for Academic Validation

Author(s):  
Emilie Sauret

Computational Fluid Dynamics (CFD) simulations are widely used in mechanical engineering. Although achieving a high level of confidence in numerical modelling is of crucial importance in the field of turbomachinery, verification and validation of CFD simulations are very tricky especially for complex flows encountered in radial turbines. Comprehensive studies of radial machines are available in the literature. Unfortunately, none of them include enough detailed geometric data to be properly reproduced and so cannot be considered for academic research and validation purposes. As a consequence, design improvements of such configurations are difficult. Moreover it seems that well-developed analyses of radial turbines are used in commercial software but are not available in the open literature especially at high pressure ratios. It is the purpose of this paper to provide a fully open set of data to reproduce the exact geometry of the high pressure ratio single stage radial-inflow turbine used in the Sundstrand Power Systems T-100 Multipurpose Small Power Unit. First, preliminary one-dimensional meanline design and analysis are performed using the commercial software RITAL from Concepts-NREC in order to establish a complete reference test case available for turbomachinery code validation. The proposed design of the existing turbine is then carefully and successfully checked against the geometrical and experimental data partially published in the literature. Then, three-dimensional Reynolds-Averaged Navier-Stokes simulations are conducted by means of the Axcent-PushButton CFD® CFD software. The effect of the tip clearance gap is investigated in detail for a wide range of operating conditions. The results confirm that the 3D geometry is correcty reproduced. It also reveals that the turbine is shocked while designed to give a high-subsonic flow and highlight he importance of the diffuser.

1950 ◽  
Vol 162 (1) ◽  
pp. 149-166 ◽  
Author(s):  
L. J. Kastner ◽  
J. R. Spooner

The air ejector, in its various forms, is a device which has many applications in engineering practice, and several attempts have been made to analyse its mode of action, some of these having been supported by experimental work. Most of the experimental results available are related to ejectors in which relatively high-pressure steam is utilized as the driving fluid, but even in these cases the information provided is restricted to a narrow field. The investigation described relates to an air ejector employing as the driving fluid air at a relatively low pressure, not exceeding 40 lb. per sq. in. (abs.), and covering a wide range of operating conditions by means of interchangeable nozzles. Two distinct experimental arrangements were built—one for the set of conditions in which the ejector draws in a relatively small quantity of suction fluid and pumps it through a relatively high pressure-ratio, and the other covering conditions in which the quantity of suction fluid is much larger, but the pressure ratio is quite small. For a given initial pressure and quantity of driving fluid, the rate of mass flow of suction fluid depends chiefly on the diameter of the combining tube, in which the driving and suction fluids mix; in the experiments, the ratio of com-bining-tube area to driving-nozzle area was varied in twelve steps, covering a range of area ratios from 1·44 to 1,110·0, and compression ratios ranging from about 3 to about 1·001. Efforts were made to find the best proportions of those parts of the ejector which exert a major influence on performance, and certain conclusions are drawn from the results of the experiments. Theoretical aspects of the problem are briefly discussed.


Author(s):  
K. R. Pullen ◽  
N. C. Baines ◽  
S. H. Hill

A single stage, high speed, high pressure ratio radial inflow turbine was designed for a single shaft gas turbine engine in the 200 kW power range. A model turbine has been tested in a cold rig facility with correct simulation of the important non-dimensional parameters. Performance measurements over a wide range of operation were made, together with extensive volute and exhaust traverses, so that gas velocities and incidence and deviation angles could be deduced. The turbine efficiency was lower than expected at all but the lowest speed. The rotor incidence and exit swirl angles, as obtained from the rig test data, were very similar to the design assumptions. However, evidence was found of a region of separation in the nozzle vane passages, presumably caused by a very high curvature in the endwall just upstream of the vane leading edges. The effects of such a separation are shown to be consistent with the observed performance.


Author(s):  
Mingyang Yang ◽  
Ricardo Martinez-Botas ◽  
Yangjun Zhang

The operating range of a centrifugal compressor, determined by surge and choke flow rate, is a key issue for turbocharging since a vehicle internal combustion engine (ICE) is usually operated across a wide range. In this paper a new flow control method is developed and validated numerically, in which an array of circumferentially distributed holes is designed in the inner wall of the inlet duct of a high pressure ratio centrifugal compressor of a turbocharger. Firstly the numerical method is validated by experimental results of the original turbocharging centrifugal compressor with a pressure ratio of 4. Next the validated method is used to investigate the new flow control method and its effect on the compressor’s performance. Results show that the method can enhance the compressor stability and widen the operating range effectively at all investigated speeds. At meantime, the choke flow reduces slightly. The flow details in the compressor are further analysed according to the CFD results. It is found that the flow near the blade tip at inlet is pre-swirled by the method as the conventional IGV does while the flow in the middle span or near the hub remains in an axial direction. As a result, the stability of the compressor is enhanced by the pre-swirl effect at the tip while minimally sacrificing the choke flow rate, thus the map is extended effectively by the flow control method.


1973 ◽  
Vol 95 (4) ◽  
pp. 1076-1082
Author(s):  
H. D. Linhardt

Single and two shaft hot gas expander compression systems will soon replace conventional multitrain, low speed equipment due to significant economic and process advantages. The single train concept is a direct result of the recent advances in high pressure ratio compressor, high performance radial inflow turbine and high performance steam turbine technology. The application and custom engineering of single train compression systems is discussed, whereby emphasis is placed on performance and reliability.


Author(s):  
Ali Merchant ◽  
Jack L. Kerrebrock ◽  
John J. Adamczyk ◽  
Edward Braunsheidel

The experimental investigation of an aspirated fan stage designed to achieve a pressure ratio of 3.4:1 at 1500 feet/sec is presented in this paper. The low-energy viscous flow is aspirated from diffusion-limiting locations on the blades and flowpath surfaces of the stage, enabling a very high pressure ratio to be achieved in a single stage. The fan stage performance was mapped at various operating speeds from choke to stall in a compressor facility at fully simulated engine conditions. The experimentally determined stage performance, in terms of pressure ratio and corresponding inlet mass flow rate, was found to be in good agreement with the 3D viscous computational prediction, and in turn close to the design intent. Stage pressure ratios exceeding 3:1 were achieved at design speed, with an aspiration flow fraction of 3.5% of the stage inlet mass flow. The experimental performance of the stage at various operating conditions, including detailed flowfield measurements, are presented and discussed in the context of the computational analyses. The sensitivity of the stage performance and operability to reduced aspiration flow rates at design and off-design conditions are also discussed.


Author(s):  
M. Schölch

The off-design behaviour of a radial-inflow turbine with pivotable nozzle vanes was measured. The turbine geometry is presented in figure 1. The losses produced in the rotor were determined over a wide range of operating conditions which were established by varying pressure ratio, speed of rotation of the rotor and the nozzle vane position. Loss correlations proposed by other authors were used to approximate the measured losses. All correlations were only able to fit the results for a single nozzle position. None of the equations used gave a satisfactory approximation for all the operating points investigated. Therefore a new way of describing the rotor losses is presented and a physical explanation for the new correlation is given.


2005 ◽  
Vol 127 (1) ◽  
pp. 43-51 ◽  
Author(s):  
Ali Merchant ◽  
Jack L. Kerrebrock ◽  
John J. Adamczyk ◽  
Edward Braunscheidel

The experimental investigation of an aspirated fan stage designed to achieve a pressure ratio of 3.4:1 at 1500 ft/s is presented in this paper. The low-energy viscous flow is aspirated from diffusion-limiting locations on the blades and flowpath surfaces of the stage, enabling a very high pressure ratio to be achieved in a single stage. The fan stage performance was mapped at various operating speeds from choke to stall in a compressor facility at fully simulated engine conditions. The experimentally determined stage performance, in terms of pressure ratio and corresponding inlet mass flow rate, was found to be in good agreement with the 3D viscous computational prediction, and in turn close to the design intent. Stage pressure ratios exceeding 3:1 were achieved at design speed, with an aspiration flow fraction of 3.5% of the stage inlet mass flow. The experimental performance of the stage at various operating conditions, including detailed flowfield measurements, are presented and discussed in the context of the computational analyses. The stage performance and operability at reduced aspiration flow rates at design and off-design conditions are also discussed.


2013 ◽  
Vol 56 (6) ◽  
pp. 1361-1369 ◽  
Author(s):  
XinQian Zheng ◽  
Yun Lin ◽  
BinLin Gan ◽  
WeiLin Zhuge ◽  
YangJun Zhang

Author(s):  
Hideaki Tamaki

Centrifugal compressors used for turbochargers need to achieve a wide operating range. The author has developed a high pressure ratio centrifugal compressor with pressure ratio 5.7 for a marine use turbocharger. In order to enhance operating range, two different types of recirculation devices were applied. One is a conventional recirculation device. The other is a new one. The conventional recirculation device consists of an upstream slot, bleed slot and the annular cavity which connects both slots. The new recirculation device has vanes installed in the cavity. These vanes were designed to provide recirculation flow with negative preswirl at the impeller inlet, a swirl counterwise to the impeller rotational direction. The benefits of the application of both of the recirculation devices were ensured. The new device in particular, shifted surge line to a lower flow rate compared to the conventional device. This paper discusses how the new recirculation device affects the flow field in the above transonic centrifugal compressor by using steady 3-D calculations. Since the conventional recirculation device injects the flow with positive preswirl at the impeller inlet, the major difference between the conventional and new recirculation device is the direction of preswirl that the recirculation flow brings to the impeller inlet. This study focuses on two effects which preswirl of the recirculation flow will generate. (1) Additional work transfer from impeller to fluid. (2) Increase or decrease of relative Mach number. Negative preswirl increases work transfer from the impeller to fluid as the flow rate reduces. It increases negative slope on pressure ratio characteristics. Hence the recirculation flow with negative preswirl will contribute to stability of the compressor. Negative preswirl also increases the relative Mach number at the impeller inlet. It moves shock downstream compared to the conventional recirculation device. It leads to the suppression of the extension of blockage due to the interaction of shock with tip leakage flow.


Sign in / Sign up

Export Citation Format

Share Document