Adhesion of C. Elegans to Agar Surfaces

Author(s):  
Kevin Adams ◽  
Roger Mailler ◽  
Michael W. Keller

The surface adhesion between C. elegans and the agar plates on which they are commonly grown has yet to be accurately quantified. C. elegans are a scientifically important species of nematode whose simple structure allowed the first mapping of the complete nervous system in a multicellular organism. One of the current topics of research in the C. elegans community is the investigation of neuronal function in locomotion. Models of locomotion are used in these studies to aid in determination of the functions of specific neurons involved in locomotion. The adhesion force plays a critical role in developing these models. This paper presents the experimental determination of the adhesion energy of a representative sample of C. elegans. Adhesion energy was determined by a direct pull-off technique. In this approach, nematodes are anesthetized to prevent movement and secured to a small load cell before an agar plate is slowly brought into contact with the specimen and then removed. The maximum tensile force is then fit to a JKR-type adhesion model, which assumes that the nematode is a cylinder in order to determine the adhesion energy. Repeated adhesions are also investigated to determine the importance of drying on the measured adhesion force.

Genetics ◽  
2002 ◽  
Vol 162 (4) ◽  
pp. 1631-1639
Author(s):  
Yo Suzuki ◽  
Gail A Morris ◽  
Min Han ◽  
William B Wood

Abstract The signaling pathway initiated by the TGF-β family member DBL-1 in Caenorhabditis elegans controls body shape in a dose-dependent manner. Loss-of-function (lf) mutations in the dbl-1 gene cause a short, small body (Sma phenotype), whereas overexpression of dbl-1 causes a long body (Lon phenotype). To understand the cellular mechanisms underlying these phenotypes, we have isolated suppressors of the Sma phenotype resulting from a dbl-1(lf) mutation. Two of these suppressors are mutations in the lon-3 gene, of which four additional alleles are known. We show that lon-3 encodes a collagen that is a component of the C. elegans cuticle. Genetic and reporter-gene expression analyses suggest that lon-3 is involved in determination of body shape and is post-transcriptionally regulated by the dbl-1 pathway. These results support the possibility that TGF-β signaling controls C. elegans body shape by regulating cuticle composition.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2755
Author(s):  
Kyuhwe Kang ◽  
Gyung-Min Choi

The electron-phonon coupling (g) parameter plays a critical role in the ultrafast transport of heat, charge, and spin in metallic materials. However, the exact determination of the g parameter is challenging because of the complicated process during the non-equilibrium state. In this study, we investigate the g parameters of ferromagnetic 3d transition metal (FM) layers, Fe and Co, using time-domain thermoreflectance. We measure a transient increase in temperature of Au in an FM/Au bilayer; the Au layer efficiently detects the strong heat flow during the non-equilibrium between electrons and phonons in FM. The g parameter of the FM is determined by analyzing the temperature dynamics using thermal circuit modeling. The determined g values are 8.8–9.4 × 1017 W m−3 K−1 for Fe and 9.6–12.2 × 1017 W m−3 K−1 for Co. Our results demonstrate that all 3d transition FMs have a similar g value, in the order of 1018 W m−3 K−1.


Author(s):  
Abhisek Dwivedy ◽  
Bhavya Jha ◽  
Khundrakpam Herojit Singh ◽  
Mohammed Ahmad ◽  
Anam Ashraf ◽  
...  

Bacterioferritins (Bfrs) are ferritin-like molecules with a hollow spherical 24-mer complex design that are unique to bacterial and archaeal species. They play a critical role in storing iron(III) within the complex at concentrations much higher than the feasible solubility limits of iron(III), thus maintaining iron homeostasis within cells. Here, the crystal structure of bacterioferritin from Achromobacter (Ach Bfr) that crystallized serendipitously during a crystallization attempt of an unrelated mycobacterial protein is reported at 1.95 Å resolution. Notably, Fe atoms were bound to the structure along with a porphyrin ring sandwiched between the subunits of a dimer. Furthermore, the dinuclear ferroxidase center of Ach Bfr has only a single iron bound, in contrast to the two Fe atoms in other Bfrs. The structure of Ach Bfr clearly demonstrates the substitution of a glutamate residue, which is involved in the interaction with the second Fe atom, by a threonine and the consequent absence of another Fe atom there. The iron at the dinuclear center has a tetravalent coordination, while a second iron with a hexavalent coordination was found within the porphyrin ring, generating a heme moiety. Achromobacter spp. are known opportunistic pathogens; this structure enhances the current understanding of their iron metabolism and regulation, and importantly will be useful in the design of small-molecule inhibitors against this protein through a structure-guided approach.


2001 ◽  
Vol 152 (6) ◽  
pp. 1183-1196 ◽  
Author(s):  
Atsushi Suzuki ◽  
Tomoyuki Yamanaka ◽  
Tomonori Hirose ◽  
Naoyuki Manabe ◽  
Keiko Mizuno ◽  
...  

We have previously shown that during early Caenorhabditis elegans embryogenesis PKC-3, a C. elegans atypical PKC (aPKC), plays critical roles in the establishment of cell polarity required for subsequent asymmetric cleavage by interacting with PAR-3 [Tabuse, Y., Y. Izumi, F. Piano, K.J. Kemphues, J. Miwa, and S. Ohno. 1998. Development (Camb.). 125:3607–3614]. Together with the fact that aPKC and a mammalian PAR-3 homologue, aPKC-specific interacting protein (ASIP), colocalize at the tight junctions of polarized epithelial cells (Izumi, Y., H. Hirose, Y. Tamai, S.-I. Hirai, Y. Nagashima, T. Fujimoto, Y. Tabuse, K.J. Kemphues, and S. Ohno. 1998. J. Cell Biol. 143:95–106), this suggests a ubiquitous role for aPKC in establishing cell polarity in multicellular organisms. Here, we show that the overexpression of a dominant-negative mutant of aPKC (aPKCkn) in MDCK II cells causes mislocalization of ASIP/PAR-3. Immunocytochemical analyses, as well as measurements of paracellular diffusion of ions or nonionic solutes, demonstrate that the biogenesis of the tight junction structure itself is severely affected in aPKCkn-expressing cells. Furthermore, these cells show increased interdomain diffusion of fluorescent lipid and disruption of the polarized distribution of Na+,K+-ATPase, suggesting that epithelial cell surface polarity is severely impaired in these cells. On the other hand, we also found that aPKC associates not only with ASIP/PAR-3, but also with a mammalian homologue of C. elegans PAR-6 (mPAR-6), and thereby mediates the formation of an aPKC-ASIP/PAR-3–PAR-6 ternary complex that localizes to the apical junctional region of MDCK cells. These results indicate that aPKC is involved in the evolutionarily conserved PAR protein complex, and plays critical roles in the development of the junctional structures and apico-basal polarization of mammalian epithelial cells.


2021 ◽  
Author(s):  
Bing Sun ◽  
McLean Sherrin ◽  
Richard Roy

Abstract During periods of starvation organisms must modify both gene expression and metabolic pathways to adjust to the energy stress. We previously reported that C. elegans that lack AMPK have transgenerational reproductive defects that result from abnormally elevated H3K4me3 levels in the germ line following recovery from acute starvation1. Here we show that H3K4me3 is dramatically increased at promoters, driving aberrant transcription elongation that results in the accumulation of R-loops in the starved AMPK mutants. DRIP-seq analysis demonstrated that a significant proportion of the genome was affected by R-loop formation with a dramatic expansion in the number of R-loops at numerous loci, most pronounced at the promoter-TSS regions of genes in the starved AMPK mutants. The R-loops are transmissible into subsequent generations, likely contributing to the transgenerational reproductive defects typical of these mutants following starvation. Strikingly, AMPK null germ lines show considerably more RAD-51 foci at sites of R-loop formation, potentially sequestering it from its critical role at meiotic breaks and/or at sites of induced DNA damage. Our study reveals a previously unforeseen role of AMPK in maintaining genome stability following starvation, where in its absence R-loops accumulate, resulting in reproductive compromise and DNA damage hypersensitivity.


2018 ◽  
Vol 44 (4) ◽  
pp. 473-481
Author(s):  
Elif Ayazoglu Demir ◽  
Ahmet Colak ◽  
Aylin Kalfa ◽  
Ahmet Yasar ◽  
Olcay Bekircan ◽  
...  

Abstract Background Tyrosinase plays a central role in the biosynthesis pathway of melanin pigment. Melanin protects human skin against radiation and its unusual levels cause some skin disorders such as pregnancy scar, oldness spots and melanoma. Tyrosinase has also been linked to Parkinson’s and other neurodegenerative diseases. In addition, melanin plays a critical role as a defense molecule for insects during wound healing and is important for their life. Therefore, determination of inhibitor molecules for tyrosinase has a promising potential for therapies of some diseases and is an alternative method for keeping insects under control. Material and methods In this study, 1-hepthyl-3-(4-methoxybenzyl)-4H-1,2,4-triazole-5-one derivative (A6, A8, A15) and 3-(4-chlorophenyl)- 5-(4-methoxybenzyl)-4H-1,2,4-triazole (B5, B9, B13) derivative compounds were evaluated in terms of their potential for mushroom tyrosinase inhibition. IC50 values of these six molecules were determined. Results It was seen that B9 molecule was the most effective inhibitor. Docking studies also nearly supported this end result. Tyrosinase inhibition type and Ki value were found to be uncompetitive and 370.7±0.3 μM, respectively, in the presence of B9 compound. Conclusion These results suggest that B9 compound is a potential tyrosinase inhibitor.


eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Hayao Ohno ◽  
Morikatsu Yoshida ◽  
Takahiro Sato ◽  
Johji Kato ◽  
Mikiya Miyazato ◽  
...  

Peptide signaling controls many processes involving coordinated actions of multiple organs, such as hormone-mediated appetite regulation. However, the extent to which the mode of action of peptide signaling is conserved in different animals is largely unknown, because many peptides and receptors remain orphan and many undiscovered peptides still exist. Here, we identify two novel Caenorhabditis elegans neuropeptides, LURY-1-1 and LURY-1-2, as endogenous ligands for the neuropeptide receptor-22 (NPR-22). Both peptides derive from the same precursor that is orthologous to invertebrate luqin/arginine-tyrosine-NH2 (RYamide) proneuropeptides. LURY-1 peptides are secreted from two classes of pharyngeal neurons and control food-related processes: feeding, lifespan, egg-laying, and locomotory behavior. We propose that LURY-1 peptides transmit food signals to NPR-22 expressed in feeding pacemaker neurons and a serotonergic neuron. Our results identified a critical role for luqin-like RYamides in feeding-related processes and suggested that peptide-mediated negative feedback is important for satiety regulation in C. elegans.


2021 ◽  
Author(s):  
Sepideh Shafaei ◽  
Elyas Hosseinzadeh ◽  
Gulsah Saydan Kanberoglu ◽  
Balal Khalilzadeh ◽  
Rahim Mohammad-Rezaei

Abstract In this study, cerium oxide and multi-walled carbon nanotubes nanocomposite was incorporated into the carbon ceramic electrode (CeO2-MWCNTs/CCE) as a renewable electrode for the electrocatalytic purposes. To demonstrate capability of the fabricated electrode, determination of Tamoxifen as an important anticancer drug with differential pulse voltammetry technique was evaluated. Linear range, limit of detection and sensitivity of the developed sensor were found to be 0.2-40 nM, 0.132 nM and 1.478 µA nM-1 cm-2, respectively. Ease of production, low cost and high electron transfer rate of CeO2-MWCNTs/CCE promise it as a novel electro-analytical tool for determination of important species in real samples.


2017 ◽  
Author(s):  
Mariela Cortés-López ◽  
Matthew Gruner ◽  
Daphne A. Cooper ◽  
Hannah N. Gruner ◽  
Alexandru-Ioan Voda ◽  
...  

SummaryCircular RNAs (CircRNAs) are a newly appreciated class of RNAs that lack free 5´ and 3´ ends, are expressed by the thousands in diverse forms of life, and are mostly of enigmatic function. Ostensibly due to their resistance to exonucleases, circRNAs are known to be exceptionally stable. Here, we examined the global profile of circRNAs in C. elegans during aging by performing ribo-depleted total RNA-seq from the fourth larval stage (L4) through 10-day old adults. Using stringent bioinformatic criteria and experimental validation, we annotated 1,166 circRNAs, including 575 newly discovered circRNAs. These circRNAs were derived from 797 genes with diverse functions, including genes involved in the determination of lifespan. A massive accumulation of circRNAs during aging was uncovered. Many hundreds of circRNAs were significantly increased among the aging time-points and increases of select circRNAs by over 40-fold during aging were quantified by qRT-PCR. The age-accumulation of circRNAs was not accompanied by increased expression of linear RNAs from the same host genes. We attribute the global scale of circRNA age-accumulation to the high composition of postmitotic cells in adult C. elegans, coupled with the high resistance of circRNAs to decay. These findings suggest that the exceptional stability of circRNAs might explain age-accumulation trends observed from neural tissues of other organisms, which also have a high composition of post-mitotic cells. Given the suitability of C. elegans for aging research, it is now poised as an excellent model system to determine if there are functional consequences of circRNA accumulation during aging.


Sign in / Sign up

Export Citation Format

Share Document