Solar-Powered Water Distillation System

2013 ◽  
Author(s):  
Abdlmonem Beitelmal ◽  
Drazen Fabris ◽  
Reece Kiriu

Future water demand is predicted to increase while current resources are continuously depleted. In this paper, a standalone off-the-grid water purification system is designed to provide an economically sustainable model for delivering clean drinking water is presented. This system utilizes concentrated heat generated by solar parabolic troughs to boil brackish water for the distillation process. The water vapor is then condensed into clean drinkable water in a water collection tank. The process of designing and optimizing the solar-powered distillation system (Heat exchanger, boiler, parabolic troughs, tracking and control system, photovoltaic panels and vapor and the heat transfer fluid pumps) and specifically the process of fabricating the parabolic trough is presented and discussed in details. Two troughs were designed and fabricated each with an area of 1.5 m2 (16 ft2). Each trough provides approximately 125 watts/ft. Duratherm 450, a non-toxic, non-hazardous heat transfer fluid (HTF) is selected for the solar trough hot loop. Additional system performance analysis was conducted through experimental testing and through a virtual system model utilizing the Engineering Equation Solver (EES). EES is used to model the heat transfer process of the overall distillation system and a range of optimum HTF flow rates were determined. The experimental results show an increase in water temperature within the boiler for the new range of HTF flow rates. In addition, the results show that the solar troughs are more robust, less expensive to manufacture, operate at a higher temperature and provide a higher performance when compared to a system that utilizes thermal panels. The overall system manufacturing cost is approximately $6000, which includes tracking, a control system and other required distillation components. This system is designed to fit into a standard 20-foot shipping container for ease of transportation worldwide.

2012 ◽  
Vol 538-541 ◽  
pp. 2061-2066
Author(s):  
Yang Zheng ◽  
Bao Lan Xiao ◽  
Wei Ming Wu ◽  
Xiao Li Yu ◽  
Guo Dong Lu

A radiator is one of the most important components in vehicular cooling system whose excellent fluid flow and heat transfer characteristics guarantees the engine operations. The calculation workload for performance simulation of a whole radiator is too huge due to its size. Experimental study is the conventional method to study radiator performance. This paper put forward a numerical simulation method and radiator heat transfer units were taken as study objects. Orthogonal experiment method was adopted to arrange multi-factor and multi-level calculation schemes. 23 samples with different fin parameters were simulated to investigate their thermal-hydraulic performances. Compared with experimental testing, this method greatly reduced sample manufacturing cost and testing cost, and offered data support for the effect factor study of radiator heat transfer units.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Hong-Ping Cheng ◽  
Shian-Min Tsai ◽  
Chin-Chi Cheng

Vacuum freeze-drying technology is applicable to the process of high heat-sensitive products. Due to the long drying period and extremely low processing temperature and pressure, the uniform and efficiency of heat transfer fluid temperature in shelf are critical for product quality. Therefore, in this study, the commercial computer fluid dynamics (CFD) software, FLUENT, was utilized for three-dimension numerical simulation of the shelf vacuum freeze-drying process. The influences of different inlet and outlet positions for shelves on the uniformity of the flow rate and temperature were discussed. Moreover, it explored the impacts on the temperature gradient of shelves after heat exchange of different flow rates and low temperature materials. In order to reduce the developing time and optimize the design, the various secondary refrigerants in different plies of shelves were investigated. According to the effect of heat exchange between different flow rates and low temperature layer material shelves on the temperature gradient of shelves surface, the minimum temperature gradient was 20 L/min, and the maximum was 2.5 L/min.


2020 ◽  
Vol 165 ◽  
pp. 01022
Author(s):  
Ruiqing Du ◽  
Dandan Jiang ◽  
Yong Wang

By applying the shallow ground energy to supply building heating and cooling, the geothermal heat exchanger systems were considered as an energy-efficient building service system. In this study, the CuO/water nanofluid was employed as circuit fluids of the geothermal heat exchanger system, and the thermal performance of the heat exchanger was investigated. The results showed that the heat transfer process of CuO/water nanofluid became stable earlier than that water. Furthermore, the heat transfer rate of nanofluid was higher than that of water when the heat transfer process plateaued.


2020 ◽  
Vol 6 (2) ◽  
pp. 72-81 ◽  
Author(s):  
Morteza Anbarsooz ◽  
Maryam Amiri ◽  
Iman Rashidi ◽  
Mohammad Javadi

Background: Enhancing the heat transfer rate in solar collectors is an essential factor for reducing the size of the system. Yet, various methods have been presented in the literature to increase the heat transfer rate from an absorber to the heat transfer fluid. The most important methods are: the use of evacuated receivers, addition of swirl generators/turbulators and use of various nanofluids as the heat transfer fluid. Objective: The current study reviews the achievements in the enhancement of solar collectors’ heat transfer process using various types of nanofluids. The review revealed that the most widely employed nanoparticles are Al2O3 and Carbon nanotubes (CNTs) and the most popular base fluid is water. Most of the investigations are performed on indirect solar collectors, while recently, the researchers focused on direct absorption methods. In the indirect absorption collectors, the thermal conductivity of the working fluid is essential, while in a direct absorption collector, the optical properties are also crucial. Optimization of the optical parameters along with the thermophysical properties of the nanofluid is suggested for the applications of solar collector.


Author(s):  
Krishna Mounica ◽  
Y.V. Hanumantha Rao ◽  
Vinay Atgur ◽  
G. Manavendra ◽  
B. Srinivasa Rao

In this paper the use of Syltherm-800 and Therminol-55 thermal oils in parabolic trough collector (PTC) is investigated with inlet temperatures of 375.35 K, 424.15 K, 470.65 K and 523.85 K and for mass flow rates of 4, 4.5 and 5 kg/sec. Analysis has been carried out using a thermal model and validated using the simulation results. Therminol-55 gives better heat transfer coefficient compared to Syltherm-800. Since Therminol-55 has higher specific heat and viscosity when compared to Syltherm-800, the use of Syltherm-800 as a heat transfer fluid in PTC is preferred. Better results are observed for temperature of 375.35 K and mass flow rate of 4 kg/sec.


2020 ◽  
Vol 143 (3) ◽  
Author(s):  
M. Murugan ◽  
A. Saravanan ◽  
G. Murali ◽  
Pramod Kumar ◽  
V. Siva Nagi Reddy

Abstract This experimentation deals with the comparative study of a flat plate wick-based solar water distillation system (SWDS) with and without V-trough (VT) solar collector (SC) under the actual environmental conditions of Salem, Tamilnadu, India, as an attempt to enhance the productivity of the solar water distillation system. The influences of wick material, solar intensity, flow rate, and ambient temperature on productivity are also proposed. To ensure accuracy in the experimentation, the overall observation is divided into four spells with four different wick materials. The hourly productivity of the proposed still is compared with the standard theoretical equation, and the deviation between them is well accepted with ±10.14%. The maximum convective and evaporative heat transfer coefficients are observed during spell 3 as 2.488 W/m2K and 25.321 W/m2K, respectively. The prediction of Nusselt number and Sherwood number are also proposed to validate the heat transfer and mass transfer, respectively. Compared to polyester, terry cotton, and jute wick materials, fur fabric wick yielded maximum productivity of 4.40 l/day and 6.29 l/day for SWDS alone and SWDS with VT, respectively. The results revealed that the productivity of the SWDS coupled with V-trough SC is 30.12% greater than SWDS alone.


2016 ◽  
Vol 839 ◽  
pp. 14-22
Author(s):  
Rungrudee Boonsu ◽  
Sukruedee Sukchai

The research was performed on thermal energy storage prototype in Thailand. Concrete was used as the solid media sensible heat material in order to fulfill local material utilization which is easy to handle and low cost. Saturated steam was used for heat transfer fluid. The thermal energy storage prototype was composed of pipes embedded in a concrete storage block. The embedded pipes were used for transporting and distributing the heat transfer medium while sustaining the pressure. The heat exchanger was composed of 16 pipes with an inner diameter of 12 mm and wall thickness of 7 mm. They were distributed in a square arrangement of 4 by 4 pipes with a separation of 80 mm. The storage prototype had the dimensions of 0.5 x 0.5 x 4 m. The charging temperature was maintained at 180°C with the flow rates of 0.009, 0.0012 and 0.014 kg/s whereas the inlet temperature of the discharge was maintained at 110°C. The performance evaluation of a thermal energy storage prototype was investigated in the part of charging/discharging. The experiment found that the increase or decrease in storage temperature depends on the heat transfer fluid temperature, flow rates, and initial temperature. The energy efficiency of the thermal energy storage prototype at the flow rate of 0.012 kg/s was the best because it dramatically increased and gave 41% of energy efficiency in the first 45 minutes after which it continued to rise yet only gradually. Over 180 minutes of operation time, the energy efficiency at this flow rate was 53% and the exergy efficiency was 38%.


2020 ◽  
Vol 10 (2) ◽  
pp. 648
Author(s):  
Juan Ignacio Córcoles ◽  
Ernesto Marín-Alarcón ◽  
Jose Antonio Almendros-Ibáñez

Enhancing heat transfer rates in heat exchangers is essential in many applications, such as in the food industry. Most fluids used in the food industry are non-Newtonian, whose viscosity is not uniform, and depends on the shear rate and temperature gradient. This is important in the selection of equipment and type of processing. The aim of this work was to numerically simulate, with a non-Newtonian fluid in laminar regime, the heat transfer process in a tube with a curved elbow. The numerical model was validated with published correlations using water as heat transfer fluid. A commercially available fruit juice was used as a non-Newtonian fluid. Its rheological properties were measured using a Modular Compact Rheometer, as well as the activation energy. The difference between outlet temperature and inlet temperature was higher for the laminar simulation (approximately 4 °C) than for the turbulent one (approximately 0.7 °C). The highest dynamic viscosity values were found at the centre of the pipe (between 0.05 and 0.09 Pa·s), with the lowest values at the wall (0.0076 Pa·s). This behaviour is explained by the pseudoplastic condition of the fruit juice. The activation energy did not yield high values, showing a moderate viscosity variation with the temperature change.


Author(s):  
Eric Reitze ◽  
Hank Price

This paper presents the implementation of an integrated solar combined cycle (ISCC) on the existing 44 MW Cameo Power Generating Station, located in Palisade, Colorado. The plant was originally built in 1957 as a coal fired power plant, to serve the Grand Junction community. This plant has been chosen to demonstrate the viability of the ISCC because of its time line to decommissioning and the availability of additional power from nearby stations to fulfill the community’s needs. The solar system at Cameo utilizes 8 aluminum parabolic trough collectors arranged in 4 loops. Each of these collectors is approximately 150 meters long and 5.77 meters wide. The hot heat transfer fluid used in the solar field is sent to a solar feed water heater, located in between two of the existing feed water heaters, to supplement the thermal energy required by the steam cycle. At design conditions, the solar field will provide 4 MW of thermal energy to the power plant. The development of this ISCC has faced several design and construction challenges not common in traditional power plant and solar power plant design. When first constructed, the Cameo station had no provisions made regarding solar field location, heat transfer fluid piping runs, heat transfer fluid pumping station, thermal expansion vessels, the addition of solar thermal energy to the feed water system, and the integration of a solar field control system into the existing plant distributed control system. Also unaccounted for are the affects the integration of a solar feed water heater has on the thermodynamic efficiency of the steam cycle. This paper discusses these challenges, as well as their resolution, as seen during the engineering, procurement, construction, and commissioning phases of this project. The Cameo Power Generating Station is located in the DeBeque Canyon, 4 miles east of Palisade, Colorado along the Colorado River and Interstate 70. The solar feed water heating demonstration will be in operation for 1 to 2 years, at the discretion of Xcel Energy, to test and develop operating and maintenance methods for large scale application. After such time, both the plant and the solar field will be decommissioned. After decommissioning all applicable solar field equipment shall be refurbished and utilized at additional testing facilities.


Sign in / Sign up

Export Citation Format

Share Document