Heat Transfer and Thermal Balance Analysis of an Aluminum Electrolysis Cell Side Lines: A Heat Recovery Capability and Feasibility Study

Author(s):  
Yaser Mollaei Barzi ◽  
Mohsen Assadi

In this study, a preliminary investigation is carried out concerning the possibility and feasibility of recovering part of the side walls heat loss to use it in an energy utilization system. For this purpose, a simple smart heat transfer model is developed for the aluminum smelter side lines accounting for the dynamic ledge profile variations and phase change. Using the model, the total side wall heat loss is estimated and evaluated in different operating conditions of the cell. The system flexibility and self-adjustment ability are taken in to account to find the appropriate solution for the heat extraction system. Using the above-mentioned analysis, the heat recovery strategy and also the possible and applicable alternatives for the side walls heat collection and utilization system are investigated.

Author(s):  
Grant L. Hawkes ◽  
James E. O’Brien ◽  
Greg G. Tao

A three-dimensional computational fluid dynamics (CFD) and electrochemical model has been created to model high-temperature electrolysis cell performance and steam electrolysis in an internally manifolded planar solid oxide electrolysis cell (SOEC) stack. This design is being evaluated experimentally at the Idaho National Laboratory (INL) for hydrogen production from nuclear power and process heat. Mass, momentum, energy, and species conservation are numerically solved by means of the commercial CFD code FLUENT. A solid-oxide fuel cell (SOFC) model adds the electrochemical reactions and loss mechanisms and computation of the electric field throughout the cell. The FLUENT SOFC user-defined subroutine was modified for this work to allow for operation in the SOEC mode. Model results provide detailed profiles of temperature, operating potential, steam-electrode gas composition, oxygen-electrode gas composition, current density and hydrogen production over a range of stack operating conditions. Results will be presented for a five-cell stack configuration that simulates the geometry of five-cell stack tests performed at the INL and at Materials and System Research, Inc. (MSRI). Results will also be presented for a single cell that simulates conditions in the middle of a large stack. Flow enters the stack from the bottom, distributes through the inlet plenum, flows across the cells, gathers in the outlet plenum and flows downward making an upside-down “U” shaped flow pattern. Flow and concentration variations exist downstream of the inlet holes. Predicted mean outlet hydrogen and steam concentrations vary linearly with current density, as expected. Contour plots of local electrolyte temperature, current density, and Nernst potential indicate the effects of heat transfer, reaction cooling/heating, and change in local gas composition. Results are discussed for using this design in the electrolysis mode. Discussion of thermal neutral voltage, enthalpy of reaction, hydrogen production, cell thermal efficiency, cell electrical efficiency, and Gibbs free energy are discussed and reported herein.


1992 ◽  
Vol 114 (4) ◽  
pp. 847-857 ◽  
Author(s):  
J. H. Wagner ◽  
B. V. Johnson ◽  
R. A. Graziani ◽  
F. C. Yeh

Experiments were conducted to determine the effects of buoyancy and Coriolis forces on heat transfer in turbine blade internal coolant passages. The experiments were conducted with a large-scale, multipass, heat transfer model with both radially inward and outward flow. Trip strips on the leading and trailing surfaces of the radial coolant passages were used to produce the rough walls. An analysis of the governing flow equations showed that four parameters influence the heat transfer in rotating passages: coolant-to-wall temperature ratio, Rossby number, Reynolds number, and radius-to-passage hydraulic diameter ratio. The first three of these four parameters were varied over ranges that are typical of advanced gas turbine engine operating conditions. Results were correlated and compared to previous results from stationary and rotating similar models with trip strips. The heat transfer coefficients on surfaces, where the heat transfer increased with rotation and buoyancy, varied by as much as a factor of four. Maximum values of the heat transfer coefficients with high rotation were only slightly above the highest levels obtained with the smooth wall model. The heat transfer coefficients on surfaces where the heat transfer decreased with rotation, varied by as much as a factor of three due to rotation and buoyancy. It was concluded that both Coriolis and buoyancy effects must be considered in turbine blade cooling designs with trip strips and that the effects of rotation were markedly different depending upon the flow direction.


Author(s):  
Justin Lapp ◽  
Wojciech Lipiński

A transient heat transfer model is developed for a solar reactor prototype for H2O and CO2 splitting via two-step non-stoichiometric ceria cycling. Counter-rotating cylinders of reactive and inert materials cycling between high and low temperature zones permit continuous operation and heat recovery. To guide the reactor design a transient three-dimensional heat transfer model is developed based on transient energy conservation, accounting for conduction, convection, radiation, and chemical reactions. The model domain includes the rotating cylinders, a solar receiver cavity, and insulated reactor body. Radiative heat transfer is analyzed using a combination of the Monte Carlo method, Rosseland diffusion approximation, and the net radiation method. Quasi-steady state distributions of temperatures, heat fluxes, and the non-stoichiometric coefficient are reported. Ceria cycles between temperatures of 1708 K and 1376 K. A heat recovery effectiveness of 28% and solar-to-fuel efficiency of 5.2% are predicted for an unoptimized reactor design.


Author(s):  
Wei Huang ◽  
Eric Million ◽  
Kelvin Randhir ◽  
Joerg Petrasch ◽  
James Klausner ◽  
...  

Abstract An axisymmetric model coupling counter-current gas-solid flow, heat transfer, and thermochemical redox reactions in a moving-bed tubular reactor was developed. The counter-current flow enhances convective heat transfer and a low oxygen partial pressure environment is maintained for thermal reduction within the reaction zone by using oxygen depleted inlet gas. A similar concept can be used for the oxidation reactor which releases high-temperature heat that can be used for power generation or as process heat. The heat transfer model was validated with published results for packed bed reactors. After validation, the model was applied to simulate the moving-bed reactor performance, through which the effects of the main geometric parameters and operating conditions were studied to provide guidance for lab-scale reactor fabrication and testing.


2018 ◽  
Vol 21 (8) ◽  
pp. 1286-1297 ◽  
Author(s):  
Antonio Gil ◽  
Andrés Omar Tiseira ◽  
Luis Miguel García-Cuevas ◽  
Tatiana Rodríguez Usaquén ◽  
Guillaume Mijotte

Each of the elements that make up the turbocharger has been gradually improved. In order to ensure that the system does not experience any mechanical failures or loss of efficiency, it is important to study which engine-operating conditions could produce the highest failing rate. Common failing conditions in turbochargers are mostly achieved due to oil contamination and high temperatures in the bearing system. Thermal management becomes increasingly important for the required engine performance. Therefore, it has become necessary to have accurate temperature and heat transfer models. Most thermal design and analysis codes need data for validation; often the data available fall outside the range of conditions the engine experiences in reality leading to the need to interpolate and extrapolate disproportionately. This article presents a fast three-dimensional heat transfer model for computing internal temperatures in the central housing for non-water cooled turbochargers and its direct validation with experimental data at different engine-operating conditions of speed and load. The presented model allows a detailed study of the temperature rise of the central housing, lubrication channels, and maximum level of temperature at different points of the bearing system of an automotive turbocharger. It will let to evaluate thermal damage done to the system itself and influences on the working fluid temperatures, which leads to oil coke formation that can affect the performance of the engine. Thermal heat transfer properties obtained from this model can be used to feed and improve a radial lumped model of heat transfer that predicts only local internal temperatures. Model validation is illustrated, and finally, the main results are discussed.


2011 ◽  
Vol 282-283 ◽  
pp. 710-715 ◽  
Author(s):  
Teng Gao ◽  
Jun Zhao ◽  
Bin Yang ◽  
Fu Wang

In this paper, a direct steam generation (DSG) collector is researched. To determinate the DSG collector efficiency, a simplified heat loss correlation is applied. A one-dimensional steady state heat transfer model and an energy balance equation for DSG collector are developed. A Visual basic program coupled with fluid parameters is compiled to compute fluid temperature, heat transfer coefficient and heat loss along the absorber tube by iterations for given accuracy. The variation trends of many kinds of fluid parameters along the absorber tube are revealed. The effect of length of dry steam region on collector efficiency is accounted for also.


Author(s):  
Youwei Lu ◽  
Prabhakar R. Pagilla

A heat transfer model that can predict the temperature distribution in moving flexible composite materials (webs) for various heating/cooling conditions is developed in this paper. Heat transfer processes are widely employed in roll-to-roll (R2R) machines that are used to perform processing operations, such as printing, coating, embossing, and lamination, on a moving flexible material. The goal is to efficiently transport the webs over heating/cooling rollers and ovens within such processes. One of the key controlled variables in R2R transport is web tension. When webs are heated or cooled during transport, the temperature distribution in the web causes changes in the mechanical and physical material properties and induces thermal strain. Tension behavior is affected by these changes and thermal strain. To determine thermal strain and material property changes, one requires the distribution of temperature in moving webs. A multilayer heat transfer model for composite webs is developed in this paper. Based on this model, temperature distribution in the moving web is obtained for the web transported on a heat transfer roller and in a web span between two adjacent rollers. Boundary conditions that reflect many types of heating/cooling of webs are considered and discussed. Thermal contact resistance between the moving web and heat transfer roller surfaces is considered in the derivation of the heat transfer model. Model simulations are conducted for a section of a production R2R coating and fusion process line, and temperature data from these simulations are compared with measured data obtained at key locations within the process line. In addition to determining thermal strain in moving webs, the model is valuable in the design of heating/cooling sources required to obtain a certain desired temperature at a specific location within the process line. Further, the model can be used in determining temperature dependent parameters and the selection of operating conditions such as web speed.


Author(s):  
Gurveer Singh ◽  
Vishwa Deepak Kumar ◽  
Laltu Chandra ◽  
R. Shekhar ◽  
P. S. Ghoshdastidar

Abstract The open volumetric air receiver (OVAR)-based central solar thermal systems provide air at a temperature > 1000 K. Such a receiver is comprised of porous absorbers, which are exposed to a high heat-flux > 800 Suns (1 Sun = 1 kW/m2). A reliable assessment of heat transfer in an OVAR is necessary to operate such a receiver under transient conditions. Based on a literature review, the need for developing a comprehensive, unsteady, heat transfer model is realized. In this paper, a seven-equations based, one-dimensional, zonal model is deduced. This includes heat transfer in porous absorber, primary-air, return-air, receiver casing, and their detailed interaction. The zonal model is validated with an inhouse experiment showing its predictive capability, for unsteady and steady conditions, within the reported uncertainty of ±7%. The validated model is used for investigating the effect of operating conditions and absorber geometry on the thermal performance of an absorber. Some of the salient observations are (a) the maximum absorber porosity of 70–90% may be preferred for non-volumetric and volumetric-heating conditions, (b) the minimum air-return ratio should be 0.7, and (c) the smallest gap to absorber-length ratio of 0.2 should suffice. Finally, suggestions are provided for extending the model.


Author(s):  
Mark Ricklick ◽  
Stephanie Kersten ◽  
V. Krishnan ◽  
J. S. Kapat

High performance turbine airfoils are typically cooled with a combination of internal cooling channels and impingement/film cooling. In such applications, the jets impinge against a target surface, and then exit along the channel formed by the jet plate, target plate, and side walls. Local convection coefficients are the result of both the jet impact, as well as the channel flow produced from the exiting jets. Numerous studies have explored the effects of jet array and channel configurations on both target and jet plate heat transfer coefficients. However, little work has been done in examining effects on the channel side walls, which may be a major contributor to heat transfer in real world applications. This paper examines the local and averaged effects of channel height and on heat transfer coefficients, with special attention given to the channel side walls. The effects on heat transfer results due to bulk temperature variations were also investigated. High resolution local heat transfer coefficient distributions on target and side wall surfaces were measured using temperature sensitive paint and recorded via a scientific grade charge-coupled device (CCD) camera. Streamwise pressure distributions for both the target and side walls was recorded and used to explain heat transfer trends. Results are presented for average jet based Reynolds numbers between 17,000 and 45,000. All experiments were carried out on a large scale single row, 15 hole impingement channel, with X/D of 5, Y/D of 4, and Z/D of 1, 3 and 5. The results obtained from this investigation will aid in the validation of predictive tools and development of physics-based models.


Author(s):  
Mohamed Gadalla ◽  
Muhammad Jasim ◽  
Omar Ahmad

Abstract The thermal stability parameter is an important parameter for predicting the lifespan of structures. In this paper, a two-dimensional transient heat transfer model of machine gun barrels undergoing continuous firing developed and analyzed for different geometries and thermal properties. The model for the transient thermal analysis is based on the forced convection heat transfer at the inner surface of the gun barrel. Finite element simulations were performed to predict the interior and exterior barrel temperature profiles and temperature contours after continuous firing process. The incomplete Cholesky Conjugate Gradient (ICCG) solver was adopted in solving unsymmetrical thermal transient analyses. The material thermal behavior studied for the basic circular cross section of gun barrels showed that the lowest inner wall temperature was for high rounds was achieved in steel barrels due to the rapid conducted and convective heat transfer to the environment. While the highest inner wall temperature was recorded for ceramic STK4 barrels and an increase of inner wall temperature by 17% was observed as compared to the typical case of circular cross section steel barrel. In general, a higher inner temperature in the gun barrel is undesirable and harm due to the possibility of reaching the cook-off scenario at earlier rounds. Results concluded that non-circular geometries with constrained cross section areas of typical case improve thermal management and the hexagonal geometry had the best thermal management and could provide more rounds for users. In addition, titanium barrels would have a weight drop of 41% while the overall barrel’s temperature increases by 49%.


Sign in / Sign up

Export Citation Format

Share Document