Simplified Thermo-Elastoplastic Numerical Modelling Techniques Applied to Friction Stir Welding of Mild Steel

Author(s):  
Daniel Micallef ◽  
Duncan Camilleri ◽  
Pierluigi Mollicone

Friction stir welding is a relatively new advanced joining technique that requires minimal power input, ultimately leading to less inherent residual stresses and distortion. The process involves a spinning tool which first plunges into the surface of the, to be welded assembly and then traverses along the joint. Frictional heat is generated, softening the material at temperatures significantly below the melting temperature of the parent material. As the tool traverses along the joint at a predetermined speed, the assembly is joined by means of a plastic straining process. This advanced welding technology has been validated for various aluminium alloys but it is only recently, due to advances in tool technology, that the possibility of joining mild steel using friction stir welding has become a viable option. This study looks into friction stir welding of mild steel and develops simplified numerical methods for the prediction of thermal gradients, residual stresses and deformation. In principle the process modelling requires a multi-disciplinary approach involving coupled thermo-fluid, microstructural-structural modelling process. Much of the latest thermo-mechanical studies of friction stir welding rely on a number of over simplifications particularly related to the heat flux distribution across the tool shoulder, and also on the backing plate boundary conditions. The objective of this paper is to scrutinise the effects of modelling in more detail and establish the most important factors leading to accurate yet computationally efficient prediction of thermal gradients and inherent residual stresses. The results show that both the heat input and heat loss modelling, due to heat dissipation to the surroundings, are crucial for the determination of the final inherent welding residual stresses. The heat generated is modelled through a predefined linear heat flux variation across the tool shoulder. However if a more precise and localized residual stress information is sought, a full thermo-fluid-structural analysis is required. This is time consuming and probably does not give significant information on manufacturing optimization. On the other hand, simplified global solutions offer the possibility to optimise friction stir welding parameters and boundary conditions during the preliminary stages of the development of the fabrication procedures, at relatively minimal time and processing power. This work is financed under the European Commission in Call FP7-SST-2012-RTD-1 High Integrity Low Distortion Assembly (HILDA) project.

2012 ◽  
Vol 445 ◽  
pp. 789-794 ◽  
Author(s):  
Vahid Moosabeiki ◽  
Ghasem Azimi ◽  
Mostafa Ghayoor

Friction stir welding (FSW) process is an emerging solid state joining process in which the material that is being welded does not melt and recast. This process uses a non-consumable tool to generate frictional heat in the abutting surfaces. The welding parameters such as tool rotational speed, welding speed, axial force, etc., and tool pin profile play a major role in deciding the weld quality. Friction stir tool plays a major role in friction stir welding process. In this investigation, it is tried to evaluate the effect of tool pin thread and tool shoulder curvature on FSW zone formation in AA6061 aluminium alloy. In this regard, six different tool pin geometries (threadless triangular pin with/without conical shoulder, threaded triangular pin with conical shoulder, threadless square pin with/without conical shoulder, threaded square pin with conical shoulder) are used to fabricate the joints. The formation of FSP zones are analyzed macroscopically. Tensile properties of the joints are evaluated and correlated with the FSP zone formation. Consequently, it is obtained that welding creates a higher quality compared to other tool pin profiles using the square tool with curved shoulder and having threaded pin.


2012 ◽  
Vol 622-623 ◽  
pp. 323-329
Author(s):  
Ebtisam F. Abdel-Gwad ◽  
A. Shahenda ◽  
S. Soher

Friction stir welding (FSW) process is a solid state welding process in which the material being welded does not melt or recast. This process uses a non-consumable tool to generate frictional heat in the abutting surfaces. The welding parameters and tool pin profile play major roles in deciding the weld quality. In this investigation, an attempt has been made to understand effects of process parameters include rotation speeds, welding speeds, and pin diameters on al.uminum weldment using double shoulder tools. Thermal and tensile behavior responses were examined. In this direction temperatures distribution across the friction stir aluminum weldment were measured, besides tensile strength and ductility were recorded and evaluated compared with both single shoulder and aluminum base metal.


2018 ◽  
Vol 762 ◽  
pp. 339-342
Author(s):  
Ho Sung Lee ◽  
Koo Kil No ◽  
Joon Tae Yoo ◽  
Jong Hoon Yoon

The object of this study was to study mechanical properties of friction stir welded joints of AA2219 and AA2195. AA2219 has been used as an aerospace materials for many years primarily due to its high weldability and high specific strength in addition to the excellent cryogenic property so to be successfully used for manufacturing of cryogenic fuel tank for space launcher. Relatively new Aluminum-Lithium alloy, AA2195 provides significant saving on weight and manufacturing cost with application of friction stir welding. Friction stir welding is a solid-state joining process, which use a spinning tool to produce frictional heat in the work piece. To investigate the effect of the rotation direction of the tool, the joining was performed by switching the positions of the two dissimilar alloys. The welding parameters include the travelling speed, rotation speed and rotation direction of the tool, and the experiment was conducted under the condition that the travelling speed of the tool was 120-300 mm/min and the rotation speed of the tool was 400-800 rpm. Tensile tests were conducted to study the strength of friction stir welded joints and microhardness were measured with microstructural analysis. The results indicate the failure occurred in the relatively weaker TMAZ/HAZ interface of AA2219. The optimum process condition was obtained at the rotation speed of 600-800 rpm and the travelling speed of 180-240 mm/min.


Author(s):  
Sungwook Kang ◽  
Jaewoong Kim ◽  
Donghyun Kim ◽  
Kwangjin Lee ◽  
Yoonchul Jung

Abstract In this study, experiments and simulations were performed for fillet joint friction stir welding according to tool shape and welding conditions. Conventional butt friction stir welding has good weldability because heat is generated by friction with the bottom of the tool shoulder. However, in the case of fillet friction stir welding, the frictional heat is not sufficiently generated at the bottom of the tool shoulder due to the shape of the tool and the shape of the joint. Therefore, it is important to sufficiently generate frictional heat by slowing the welding speed as compared to butt welding. In this study, experiments and simulations were carried out on an aluminum battery housing made by friction stir welding an extruded material with a fillet joint. The temperature of the structure was measured using thermocouple during welding, and the heat source was calculated through correlation analysis. Thermal elasto-plastic analysis of the structure was carried out using the calculated heat source and geometric boundary conditions. It is confirmed that the experimental results and the simulation results are well matched. Based on the results of the study, the deformation of the structure can be calculated through simulation even if the tool shape and welding process conditions change.


Author(s):  
Arshad Noor Siddiquee ◽  
Sunil Pandey ◽  
Mustufa Haider Abidi ◽  
Abdulrahman Al-Ahmari ◽  
Noor Zaman Khan ◽  
...  

Welding AISI 304 stainless steel is challenging, especially as fusion-based welding processes (such as arc welding) severely undermine the material's corrosion resistance due to sensitization. Solid-state friction stir welding is one of the most suitable alternatives. Friction stir welding of high-strength high-softening materials such as AISI 304 is difficult mainly because of the non-availability of affordable tools and tool life. In this study, AISI 304 stainless steel was successfully butt-welded by friction stir welding. The experiments were performed using Taguchi's L27 orthogonal array. Shoulder diameter, tool r/min, and traverse speed were selected as the most influential welding parameters. A Tungsten Carbide (WC) tool was employed with a tapered pin profile. Defect-free joints were fabricated successfully for all the welding conditions. Microstructural examinations using optical microscopy and scanning electron microscopy revealed significant grain refinement in the stir zone and the presence of distinct structural features such as stepped, dual, and ditch in various characteristics zones. The presence of precipitates was also observed in samples and was confirmed via energy-dispersive X-ray spectroscopy analysis. The in-process traverse force was measured by a special arrangement of force measuring units attached to the work fixture. The traverse force data were analyzed and optimized. The results of an analysis of variance reveal that the traverse speed was the most important parameter, followed by tool r/min, interaction between the tool shoulder diameter and traverse speed, interaction between the tool shoulder diameter and tool r/min, and, finally, the tool r/min.


Materials ◽  
2019 ◽  
Vol 12 (20) ◽  
pp. 3387 ◽  
Author(s):  
Tingke Wu ◽  
Fengqun Zhao ◽  
Haitao Luo ◽  
Haonan Wang ◽  
Yuxin Li

Aiming at the problems that the temperature in the welding area of friction stir welding (FSW) is difficult to measure and the joints are prone to defects. Hence, it is particularly important to study the material flow in the welding area and improve the welding quality. The temperature of the tool shoulder and the tool pin was monitored by the wireless temperature measuring system. The finite element model of friction stir welding was established and the welding conditions were numerically simulated. The flow law of material of the friction stir welding process was studied by numerical simulation. The material flow model was established by combining the microstructure analysis results, and the forming mechanism of the defects was analyzed. The results show that the temperature in the welding zone is the highest at 1300 rpm, and the temperature at the tool shoulder is significantly higher than that at the tool pin in the welding stage. When high-rotation speeds (HRS) are chosen, the material beneath the tool shoulder tends to be extruded into the pin stirred zone (PSZ) after flowing back to the advancing side. This will cause turbulence phenomenon in the advancing side of the joint, which will easily lead to the formation of welding defects. In the future, temperature monitoring methods and the flow model of material can be used to optimize the welding parameters.


Author(s):  
M Song ◽  
R Kovacevic

A mathematical model to describe the detailed three-dimensional transient heat transfer process in friction stir welding (FSW) is presented. This work is both theoretical and experimental. An explicit central differential scheme is used in solving the control equations, the heat transfer phenomena during the tool penetrating, the welding and the tool-removing periods that are studied dynamically. The heat input from the tool shoulder is modelled as a frictional heat and the heat from the tool pin is modelled as a uniform volumetric heat generated by the plastic deformation near the pin. The temperature variation during the welding is also measured to validate the calculated results. The calculated results are in good agreement with the experimental data.


Abstract. Friction stir welding (FSW) is an important joining process wherein two dissimilar metals and alloys are welded together using frictional heat produced in a revolving tool and workpiece. FSW is playing an important role in dissimilar material joining of Magnesium (Mg) and Aluminum (Al) materials due to the increasing demand for their industrial applications. In this review article, the research background of FSW processes, and influences of joining factors on tensile strength, micro-hardness, and microstructures of FSW of Al-Mg alloy materials have been studied. The effects of joining factors for example axial force, tool revolving speed, tool incline, speed, and offset on welding characterizes have been enlightened to make defect-free FSW of aluminum and magnesium alloys. The microstructural behaviors of intermetallic formation and material drift in FSW zones of Al-Mg were also studied to find the scope to improve the welding quality.


2016 ◽  
Vol 20 (5) ◽  
pp. 1693-1701
Author(s):  
Alin Murariu ◽  
Darko Veljic ◽  
Dragana Barjaktarevic ◽  
Marko Rakin ◽  
Nenad Radovic ◽  
...  

The heat generated during friction stir welding (FSW) process depends on plastic deformation of the material and friction between the tool and the material. In this work, heat generation is analysed with respect to the material velocity around the tool in Al alloy Al2024-T351 plate. The slip rate of the tool relative to the workpiece material is related to the frictional heat generated. The material velocity, on the other hand, is related to the heat generated by plastic deformation. During the welding process, the slippage is the most pronounced on the front part of the tool shoulder. Also, it is higher on the retreating side than on the advancing side. Slip rate in the zone around the tool pin has very low values, almost negligible. In this zone, the heat generation from friction is very low, because the material is in paste-like state and subjected to intensive plastic deformation. The material flow velocity around the pin is higher in the zone around the root of the pin. In the radial direction, this quantity increases from the pin to the periphery of the tool shoulder.


Sign in / Sign up

Export Citation Format

Share Document