Experimental Investigation to Study Cutting Temperature During Milling of Unidirectional Carbon Fiber Reinforced Plastic

Author(s):  
Seyedbehzad Ghafarizadeh ◽  
Jean-François Chatelain ◽  
Gilbert Lebrun

The surface machining of Carbon Fiber Reinforced Plastics (CFRP) materials is a challenging process, given the heterogeneity and anisotropic nature of these composites, which, combined with the abrasiveness of the fibers involved, can produce some surface damage and extensive tool wear. The cutting temperature is one of the most important factors associated with the tool wear rate and machinability of these materials, which are also affected by the mechanical and thermal properties of the work material and the cutting conditions. In this work, the cutting temperature, forces and surface roughness were measured under different cutting conditions during the ball-end milling of unidirectional CFRP. Cutting speeds ranging from 200 to 350 m/min, a feed rate of 0.063 mm/rev, fiber orientation of (the angle between carbon fibers and feed direction) 0, 45, 90 and 135 degrees, and a 0.5 mm depth of cut were used. The results show that the cutting speed and fiber orientation have a significant influence on the cutting temperature and cutting force. The maximum and minimum cutting forces and temperature were achieved for fiber orientations of 90 and 0 degrees, respectively.

2015 ◽  
Vol 9 (4) ◽  
pp. 356-364 ◽  
Author(s):  
Satoru Maegawa ◽  
◽  
Yuta Morikawa ◽  
Shinya Hayakawa ◽  
Fumihiro Itoigawa ◽  
...  

This paper discusses tool-wear processes in the milling of carbon fiber-reinforced plastic (CFRP) laminates. Plane down-milling tests with unidirectional and cross-directional CFRP laminates were performed using two types of cutting tools made of tungsten carbide and polycrystalline diamond. Measurements of the changes in the cutting forces and tool-wear widths over the cutting distance revealed that the fiber orientation direction in the CFRP laminates relative to the tool-traveling direction is an important parameter to determine the tool-wear processes. Additionally, based on obtained experimental results, a wear parameter to characterize cutting tool wear is introduced. This parameter can accurately explain the relationship between the worn tool-edge profiles and the processed-surface quality.


2018 ◽  
Vol 37 (13) ◽  
pp. 905-916 ◽  
Author(s):  
Qinglong An ◽  
Jie Chen ◽  
Xiaojiang Cai ◽  
Tingting Peng ◽  
Ming Chen

Carbon fiber reinforced polymer has been used as a major material for primary load-bearing structural components in aviation industry. But its poor heat resistance is an important factor affecting the machining performance, because high cutting temperature above glass transition temperature of resin matrix (normally 300°C or below) may lead to the degradation of the resin matrix. In this study, orthogonal machining experiments were conducted to investigate the effects of cutting parameters, cutting tool geometric parameters, and material parameters on cutting temperature, and the prediction model of cutting temperature about fiber orientation angle ( θ) was built. Cutting temperature was measured by semiartificial thermocouple method. The experimental results revealed that the influence of cutting parameters on cutting temperature was not affected by fiber orientation angle of carbon fiber reinforced polymer. Cutting tool geometric parameters have little effect on cutting temperature. Unlike metal materials, cutting temperature was greatly influenced by θ. Cutting temperature for θ < 90° was significantly higher than that for θ > 90°. The maximum temperature occurred at θ = 90°. The influence of fiber orientation angle was shown in two aspects: changing the springback of unidirectional-carbon fiber reinforced polymer laminates in cutting process, changing material removal mechanism, which affected cutting temperature eventually.


Polymers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 754
Author(s):  
Jantrawan Pumchusak ◽  
Nonthawat Thajina ◽  
Watcharakorn Keawsujai ◽  
Pattarakamon Chaiwan

This work aims to explore the effect of organo-modified montmorillonite nanoclay (O-MMT) on the mechanical, thermo-mechanical, and thermal properties of carbon fiber-reinforced phenolic composites (CFRP). CFRP at variable O-MMT contents (from 0 to 2.5 wt%) were prepared. The addition of 1.5 wt% O-MMT was found to give the heat resistant polymer composite optimum properties. Compared to the CFRP, the CFRP with 1.5 wt% O-MMT provided a higher tensile strength of 64 MPa (+20%), higher impact strength of 49 kJ/m2 (+51%), but a little lower bending strength of 162 MPa (−1%). The composite showed a 64% higher storage modulus at 30 °C of 6.4 GPa. It also could reserve its high modulus up to 145 °C. Moreover, it had a higher heat deflection temperature of 152 °C (+1%) and a higher thermal degradation temperature of 630 °C. This composite could maintain its mechanical properties at high temperature and was a good candidate for heat resistant material.


Materials ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 1418 ◽  
Author(s):  
Maria Navarro-Mas ◽  
Juan García-Manrique ◽  
Maria Meseguer ◽  
Isabel Ordeig ◽  
Ana Sánchez

Although there are many machining studies of carbon and glass fiber reinforced plastics, delamination and tool wear of basalt fiber reinforced plastics (BFRP) in edge trimming has not yet studied. This paper presents an end milling study of BFRP fabricated by resin transfer molding (RTM), to evaluate delamination types at the top layer of the machined edge with different cutting conditions (cutting speed, feed rate and depth of cut) and fiber volume fraction (40% and 60%). This work quantifies delamination types, using a parameter Sd/L, that evaluates the delamination area (Sd) and the length (L), taking into account tool position in the yarn and movement of yarns during RTM process, which show the random nature of delamination. Delamination was present in all materials with 60% of fiber volume. High values of tool wear did not permit to machine the material due to an excessive delamination. Type II delamination was the most usual delamination type and depth of cut has influence on this type of delamination.


2019 ◽  
Vol 3 (1) ◽  
pp. 23 ◽  
Author(s):  
Ramy Hussein ◽  
Ahmad Sadek ◽  
Mohamed Elbestawi ◽  
M. Attia

Carbon fiber-reinforced polymers (CFRP) are widely used in the aerospace industry. A new generation of aircraft is being built using CFRP for up to 50% of their total weight, to achieve higher performance. Exit delamination and surface integrity are significant challenges reported during conventional drilling. Exit delamination influences the mechanical properties of machined parts and, consequently, reduces fatigue life. Vibration-assisted drilling (VAD) has much potential to overcome these challenges. This study is aimed at investigating exit delamination and geometrical accuracy during VAD at both low- and high-frequency ranges. The kinematics of VAD are used to investigate the relationship between the input parameters (cutting speed, feed, vibration frequency, and amplitude) and the uncut chip thickness. Exit delamination and geometrical accuracy are then evaluated in terms of mechanical and thermal load. The results show a 31% reduction in cutting temperature, as well as a significant enhancement in exit delamination, by using the VAD technology.


Sign in / Sign up

Export Citation Format

Share Document