On the Robustness of the Volumetric Shrinkage Method in the Context of Variation Simulation

Author(s):  
Samuel Lorin ◽  
Christoffer Cromvik ◽  
Fredrik Edelvik ◽  
Lars Lindkvist ◽  
Rikard Söderberg

Welding induces high temperatures that cause residual stresses and strains in the welded structure. With a welding simulation, these stresses and strains may be predicted. A full simulation implies performing a transient thermal and a quasi-static mechanical analysis. These analyses usually involve a large number of time steps that leads to long simulation times. For welding distortions, there are approximate methods that require considerably less time. This is useful when simulating large structures or for analyses that use an iterative approach common in optimization or variation simulation. One of these methods is volumetric shrinkage, which has been shown to give reasonable results. Here it is assumed that the driving force in welding distortion is the contraction of the region that has been melted by the weld. In volumetric shrinkage, the nodes that are inside the melted region are assigned a uniform temperature and the distortion is calculated using elastic volumetric shrinkage. Although this method has been shown to give reasonable predictions, we will show that it is sensitive to small perturbations, which is an essential part in variation simulation. We also propose a modification of the volumetric shrinkage method that addresses this lack of robustness; instead of defining the melted region by applying a uniform temperature to the nodes inside the zone, we formulate an optimization problem that finds a temperature distribution such that the local melted volume is preserved. A case study with application to variation simulation has been used to elicit the proposed method.

2019 ◽  
Vol 45 (4) ◽  
Author(s):  
Barbora Vojáčková ◽  
Jan Tippner ◽  
Petr Horáček ◽  
Luděk Praus ◽  
Václav Sebera ◽  
...  

Failure of a tree can be caused by a stem breakage, tree uprooting, or branch failure. While the pulling test is used for assessing the first two cases, there is no device-supported method to assess branch failure. A combination of the optical technique, pulling test, and deflection curve analysis could provide a device-supported tool for this kind of assessment. The aim of the work was to perform a structural analysis of branch response to static mechanical loading. The analyses were carried out by finite element simulations in ANSYS using beam tapered elements of elliptical cross-sections. The numerical analyses were verified by the pulling test combined with a sophisticated optical assessment of deflection evaluation. The Probabilistic Design System was used to find the parameters that influence branch mechanical response to loading considering the use of cantilever beam deflection for stability analysis. The difference in the branch’s deflection between the simulation and the experiment is 0.5% to 26%. The high variability may be explained by the variable modulus of the elasticity of branches. The finite element (FE) sensitivity analysis showed a higher significance of geometry parameters (diameter, length, tapering, elliptical cross-section) than material properties (elastic moduli). The anchorage rotation was found to be significant, implying that this parameter may affect the outcome in mechanical analysis of branch behavior. The branch anchorage can influence the deflection of the whole branch, which should be considered in stability assessment.


Materials ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 5789
Author(s):  
Olga Mysiukiewicz ◽  
Mateusz Barczewski ◽  
Arkadiusz Kloziński

Polylactide-based composites filled with waste fillers due to their sustainability are a subject of many current papers, in which their structural, mechanical, and thermal properties are evaluated. However, few studies focus on their behavior in low temperatures. In this paper, dynamic and quasi-static mechanical properties of polylactide-based composites filled with 10 wt% of linseed cake (a by-product of mechanical oil extraction from linseed) were evaluated at room temperature and at −40 °C by means of dynamic mechanical analysis (DMA), Charpy’s impact strength test and uniaxial tensile test. It was found that the effect of plasticization provided by the oil contained in the filler at room temperature is significantly reduced in sub-zero conditions due to solidification of the oil around −18 °C, as it was shown by differential scanning calorimetry (DSC) and DMA, but the overall mechanical performance of the polylactide-based composites was sufficient to enable their use in low-temperature applications.


Author(s):  
Arpan Kumar Mondal ◽  
Anche Lohit ◽  
Pankaj Biswas ◽  
Swarup Bag ◽  
Manas Das

Angular distortion in fusion welded joints is an alarming issue which affects the stability and life of the welded structures, occurs due to the changes in the temperature gradient during the welding process. This degrades the dimensional quality of a large structure during assembly which leads to rework the products and hence decreases the productivity. Predicting the weld-induced residual deformation before the production saves the valuable time and resources for rework. The conventional coupled transient, nonlinear, elasto-plastic thermo-mechanical analysis involves huge computational time. Computing a weld sample of small size with single pass itself takes several hours, which will be a huge amount of time in case of large structures consisting of several welding passes; thus, there is a real need of an efficient alternative technique to predict the post-weld distortions. In this work, an attempt has been made to determine the deformation in a submerged arc welded structure using equivalent load technique which reduces the total analysis time by one-third of the conventional techniques in case of a small weld structure. In this proposed method, the transient nonlinear elasto-plastic structural analysis part which is the major time-consuming part of analysis has been almost eliminated. So, this method can effectively use to predict the weld-induced distortion of very large structure with a computation time almost equal to the time required for transient thermal analysis of a small weld structure only. It is not feasible to analyze such a large welded structure with conventional coupled transient, elasto-plastic, nonlinear thermo-mechanical analysis. The predicted results of distortions have been validated with the experimental as well as published results and good agreements have been found.


2012 ◽  
Vol 82 (20) ◽  
pp. 2071-2077 ◽  
Author(s):  
Hongshan Wang ◽  
Zhigang Xia ◽  
Weilin Xu

In this study, a quasi-static model is built to theoretically analyze the distribution of twists and spinning tension in embeddable and locatable spun (ELS) yarn formation zone. Important equations are also derived to determine inner mechanics and external configurations of the ELS yarn formation zones 1, 2 and 3. Analysis results demonstrate that in zones 1 and 2 the tension distribution on the filament and staple strand is directly proportional to their linear mass and square of delivery speed; the larger weight causes a smaller angle between the responding component and the composite strand axis line. The angle between the composite strands 1 and 2 can be simply calculated by dividing the composite yarn velocity by composite strand velocity. Online photographs are provided to validate theoretical analysis of the ELS yarn formation zone configuration and twist distribution in zones 1 and 2.


Author(s):  
K. Tolidis ◽  
D. Papadogiannis ◽  
Y. Papadogiannis ◽  
P. Gerasimou

2019 ◽  
Vol 142 (1) ◽  
Author(s):  
Hsien-Chie Cheng ◽  
Yan-Cheng Liu

Abstract This study presents a comprehensive assessment of the process-induced warpage of molded wafer for chip-first, face-down fan-out wafer-level packaging (FOWLP) during the fan-out fabrication process. A process-dependent simulation methodology is introduced, which integrates nonlinear finite element (FE) analysis and element death-birth technique. The effects of the cure-dependent volumetric shrinkage, geometric nonlinearity, and gravity loading on the process-induced warpage are examined. The study starts from experimental characterization of the temperature-dependent material properties of the applied liquid type epoxy molding compound (EMC) system through dynamic mechanical analysis (DMA) and thermal mechanical analysis. Furthermore, its cure state (heat of reaction and degree of cure (DOC)) during the compression molding process (CMP) is measured by differential scanning calorimetry (DSC) tests. Besides, the cure dependent-volumetric (chemical) shrinkages of the EMC system after the in-mold cure (IMC) and postmold cure (PMC) are experimentally determined by which the volumetric shrinkage at the gelation point is predicted through a linear extrapolation approach. To demonstrate the effectiveness of the proposed theoretical model, the prediction results are compared against the inline warpage measurement data. One possible cause of the asymmetric/nonaxisymmetric warpage is also addressed. Finally, the influences of some geometric dimensions on the warpage of the molded wafer are identified through parametric analysis.


1992 ◽  
Vol 114 (4) ◽  
pp. 441-451 ◽  
Author(s):  
S. Brown ◽  
H. Song

Current simulations of welding distortion and residual stress have considered only the local weld zone. A large elastic structure surrounding a weld, however, can couple with the welding operation to produce a final weld state much different from that resulting when a smaller structure is welded. The effect of this coupling between structure and weld has the potential of dominating the final weld distortion and residual stress state. This paper employs both two-and three-dimensional finite element models of a circular cylinder and stiffening ring structure to investigate the interaction of a large structure on weld parameters such as weld gap clearance (fitup) and fixturing. The finite element simulation considers the full thermo-mechanical problem, uncoupling the thermal from the mechanical analysis. The thermal analysis uses temperature-dependent material properties, including latent heat and nonlinear heat convection and radiation boundary conditions. The mechanical analysis uses a thermal-elastic-plastic constitutive model and an element “birth” procedure to simulate the deposition of weld material. The effect of variations of weld gap clearance, fixture positions, and fixture types on residual stress states and distortion are examined. The results of these analyses indicate that this coupling effect with the surrounding structure should be included in numerical simulations of welding processes, and that full three-dimensional models are essential in predicting welding distortion. Elastic coupling with the surrounding structure, weld fitup, and fixturing are found to control residual stresses, creating substantial variations in highest principal and hydrostatic stresses in the weld region. The position and type of fixture are shown to be primary determinants of weld distortion.


Sign in / Sign up

Export Citation Format

Share Document