The Investigation of Stress Distribution on the Tractor Clutch Finger Mechanism by Using Finite Element Method

Author(s):  
F. Karpat ◽  
O. Dogan ◽  
C. Yuce ◽  
N. Kaya ◽  
G. Cengiz

In recent years, there has been an increasing demand for tractor usage for agricultural activities in the world. Tractors are an integral part of mechanization and have a crucial role to play to enhance agricultural productivity. They are used for many kinds of farm work, under various soil and field conditions. It provides agricultural activities in challenging conditions by using several farming equipment. During the operations, tractors have to efficiently transfer power from the engine to the drive wheels and PTO through a transmission. Tractor clutch is the essential element in this system. During the torque transmission, loads which occur on the clutch components cause damages. In many cases, especially PTO clutch finger mechanism is fractured under the torque transmission. In this study, finger mechanism, which used in tractor clutch PTO disc, is investigated. Finite element analyses were performed for two different thicknesses (3.5 and 4 mm) of the finger mechanism. Stress and deformation values which occur during the transfer of power in a safe manner are investigated for these thicknesses. The finger mechanism CAD models were created using CATIA V5 and then imported into ANSYS for static finite element analyses. As a result of the analyses, approximately 13% stress decreasing was observed with the increment of the 0.5 mm for the finger thicknesses. Results from the analyses provide an accurate prediction of the material yielding and load path distribution on the PTO clutch finger. To verify the analyses results prototype PTO finger mechanism was manufactured and was conducted bench tests. Consequently, a good correlation was achieved between finite element model and test results.

2020 ◽  
Vol 70 (1) ◽  
pp. 41-46
Author(s):  
Yaoji Deng ◽  
Youqun Zhao ◽  
Mingmin Zhu ◽  
Zhen Xiao ◽  
Qiuwei Wang

To overcome the shortcomings of traditional rigid road wheel, such as poor damping effect and low load-bearing efficiency, a new type of flexible road wheel, having a unique suspension-bearing mode, was introduced. The three-dimensional nonlinear finite element model of rigid and flexible road wheel, considering the triple nonlinear characteristics of geometry, material and contact, is established for numerical investigation of static loading performance. The accuracy of the finite element model of the rigid and flexible road wheel is verified by static loading experiment. The static loading performance of the rigid and flexible road wheels is numerically analyzed. The influence of vertical load on maximum stress and deformation of the rigid and flexible wheels is also studied. The results show that the contact pressure uniformity of the flexible road wheel is better than that of the rigid road wheel under the static vertical load, but the maximum stress and deformation of the flexible road wheel are greater than that of the rigid road wheel. However, this problem can be solved by increasing the number of hinge sets and optimising the joints. The research results provide theoretical basis for replacing rigid road wheel with flexible road wheel, and also provide reference for structural optimisation of flexible road wheel.


2014 ◽  
Vol 62 ◽  
pp. 113-118 ◽  
Author(s):  
Flavien Fremy ◽  
Sylvie Pommier ◽  
Erwan Galenne ◽  
Stephan Courtin ◽  
Jean-Christophe Le Roux

2014 ◽  
Vol 644-650 ◽  
pp. 455-458
Author(s):  
Yao Ye ◽  
Yong Hai Wu

Frame has important effects on the performance of the whole of heavy semi-trailer. A heavy semi-trailer frame is analyzed and researched on in the finite-element way in this article. The frame of 3D geometric model is established by using Pro/E. And it was imported into the Hypermesh to establish frame finite element model. Frame are calculated by using ANSYS solver in bending condition, emergency braking conditions and rapid turn conditions of stress and deformation conditions. The computational tools and methods we used provide the new type of frame and development with a reference method to refer to in this paper.


2013 ◽  
Vol 470 ◽  
pp. 962-965
Author(s):  
Dong Yan Ding ◽  
Jian Min Ren

The Chengzigou hydropower station of composite geomembrane rockfill dam as an example of the dam body and the composite geotechnical membrane stress and deformation characteristics are used nonlinear elastic model - Duncan EB model establish three-dimensional finite element model of rockfill,by using the large finite element softwareFLAC3D,whice provided geogrid element to simulate lexible geomembrane shear interaction with soil.The stress and deformation of the dam and the composite geomembrane is calculated under two conditionscompletion period and impoundment period.And analyze the change of the stress and strain distribution rule,whice will provide the basis for the design of the geomembrane.


1982 ◽  
Vol 196 (1) ◽  
pp. 191-197 ◽  
Author(s):  
P W Sharman

Experiments on thin fabricated box members in a tee joint configuration revealed deformations which could not be correlated with beam-type models, even when spring elements were introduced at the joint. The behaviour was also observed in finite element analyses of the joints. Part of the cab structure of a heavy goods vehicle which formed a plane frame with fabricated members of closed cross-section was tested in torsion and the stiffness compared with theoretical predictions. The application of classical beam and torsional theory gave a result which was approximately ten times the experimental value. A further theoretical estimate, which included the joint flexibility as predicted by a finite element model of the localized region at the joint, gave an improved result which was 26 per cent higher than the experimental value.


Author(s):  
C. Yüce ◽  
F. Karpat ◽  
N. Yavuz ◽  
Ö. Kaynaklı ◽  
E. Dolaylar ◽  
...  

Profitability is the key concern for transport companies. Costs are increased due to the rising fuel prices and technological investments. As well as new legal restrictions on the emission rates have forced the sector different fuel efficient technologies. Reducing weight is one of the most important methods of improving fuel efficiency and cutting CO2 emissions. Accordingly lighter, more fuel efficient, environmentally sustainable and safety vehicles are in the priority list of European authorities. And also the future of hybrid and electric vehicles depends on the lightweighting. The seat structure was chosen as the area for study which presented the best opportunity for weight reduction by the use of new materials. A seat provides comfort and safety of an occupant’s while travelling. In the event of crash, the passenger seat is exposed many different forces. For this reason it should be designed sufficient strength and stiffness. Therefore an optimized seat design should be aesthetically pleasing, ergonomic, light and meet the safety requirements. Seats play an important role in mass of buses and coaches due to number of seats per vehicle. In this project, finite element analysis, together with topology and free-size optimization is used to design a lightweight passenger seat for new generation commercial vehicles. The seat CAD models were created with CATIA V5 and then imported into HyperMesh for finite element model creation and analysis. Results from the nonlinear analysis provide an accurate prediction of the material yielding and load path distribution on the seat structural frame components. In the end, the verification tests which were determined by ECE are applied the new seat and results were compared with the FEA results. In this study, the lightweight passenger seat prototypes have developed. High strength steel and fiber-reinforced plastic parts are used. An overall 20% weight reduction is achieved including the structural frame, cushion, armrest, and pillar. And also the new passenger seat provides ECE safety norms.


2011 ◽  
Vol 243-249 ◽  
pp. 1941-1946
Author(s):  
Mu Cao ◽  
Guo Fen Li ◽  
Hua Ping Zhu

The geometric structure of steel deck plates is complex. So it is difficult to get precise results in the mechanics calculation of deck pavement with traditional methods. This paper adopts the finite element method for the mechanics analysis of the composite guss asphalt surfacing layer of curved steel box girder bridges. By taking the orthotropic steel deck and the pavement as a whole, a reasonable finite element model is established and optimized for the mechanical study of steel deck pavement. This model can be used to study the stress and deformation features of the surfacing layer. According to the common diseases in steel deck pavements and the effect of the overload and the horizontal load in braking to the pavement, this paper puts forward the comprehensive control indicators for pavement failures.


2014 ◽  
Vol 607 ◽  
pp. 286-289
Author(s):  
Hai Fei Qiu ◽  
Song Lin Wu ◽  
Hong Cai Yang

Trough roller is an important component part on belt conveyor, the carrying capacity of the roller is a basis of belt conveyor. The calculation principle and method of material’s cross section area is deduced in the thesis, and mechanical analysis of the trough roller is carried out based on that, in results, the static load of it is calculated. The finite element model of the trough roller is set up by Simulation /Works software, and then the stress and deformation results of it is clear through finite element statics calculation and analysis. Based on this thesis, some valuable basis and reference are offered to trough roller’s strength and stiffness design.


2012 ◽  
Vol 472-475 ◽  
pp. 2052-2058
Author(s):  
Ping Liao ◽  
Fang Ping Deng ◽  
Rui Ming Ding ◽  
Yu Xin Wu

This paper focuses on the static and dynamic characteristics of a high speed CNC lathe feeding system, which is analyzed by using the Finite Element Method (FEM). In this study, the location of the maximum stress and deformation is demonstrated and checked, natural frequency and corresponding vibration modes is extracted and analyzed respectively, and the way to build finite element model is simply conducted. Furthermore, vibration testing of the feeding system in X, Y, Z-Direction is carried out respectively, both the theoretical analysis and test results show good agreement with each other. Finally, some conclusions and reviews are made based on the analysis results, which provide some reliable basis for the reasonable operation and static and dynamic characteristics’ improvement for the feeding system.


1989 ◽  
Vol 111 (1) ◽  
pp. 94-100 ◽  
Author(s):  
Wen-Hwa Chen ◽  
Pwu Tsai

A rigorous and accurate finite element model has been developed and applied to deal with an involute gear drive considering friction effects. The loss of torque transmission due to friction and effective friction coefficient are evaluated and computed. The rolling and/or sliding behaviors between two engaged gears during an engagement cycle are also discussed. The patterns of stress distributions and deformations of two contact gears at various engagement angles are then presented. Excellent correlations between the calculated results and referenced experimental data can be found.


Sign in / Sign up

Export Citation Format

Share Document