Shaped Magnetic Field in Resonance Technology and its Application to Transportation System

Author(s):  
Dong-Ho Cho ◽  
Nam Pyo Suh ◽  
Uooyeol Yoon ◽  
Guho Jung

KAIST has developed the Shaped Magnetic Field in Resonance (SMFIR) technology that transfers a large amount of energy to electric vehicles when they are running or stationary. The wireless charging SMFIR technology provides a solution to the commercialization barriers of electric vehicles such as the problems of batteries and charging infrastructure. Using 20-kHz wireless power transfer system based on the SMFIR technology, our eco-friendly On Line Electric Vehicle (OLEV) bus was wirelessly powered by 100 kW through a power grid embedded under the road. On the other hand, using high-capacity, high-efficiency and low-cost 60kHz power supply and pickup systems based on the SMFIR technology, tram and high speed train were wirelessly powered by 180 kW and 1 MW through a power grid built in rail roads, respectively. The commercial OLEV tram has been operated commercially from July 2011 in Seoul National Grand Park. Also, the OLEV shuttle bus has been operated for convenience of students and faculty members at KAIST campus since Oct. 2012. In addition, the world’s first intra-city OLEV bus with 100 KW pickup capacity has been operated commercially at Gumi city from March 2014. Then, airgap is about 20 cm and maximum power transfer efficiency is 85 %.

Electric Vehicles (EVs) are considered to be one of the most sustainable forms of transportation. Unlike hybrid vehicles or gas-powered cars, EVs run solely on electric power. However, despite their many benefits, EVs are facing major challenges in the market today. The major challenge being its exorbitant costs as compare to fuel-based cars. And, range anxiety also proves to be a hurdle for EVs [6]. Thus, to answer all the aforementioned challenges, we proposed Electro-Magnetic Induction-based Roads (EMIR), a dynamic wireless recharging system. EVs would be able to slip into a special EMIR green lane, recharge their batteries a bit, and slip out. This technology will thus reduce the size of the EV battery, which is the most expensive part of the EV, by increasing its effective mileage and the life of the battery. This paper elaborates on the method of performing dynamic wireless power transfer through resonance based electromagnetic induction. A 163 cm long and a 30 cm wide transmitter coil was designed to transfer electrical energy to an oval-shaped receiver coil with 40 cm as its major axis and 30 cm as its minor axis. The EV battery is dynamically recharged by a charging infrastructure between the road and the vehicle while it is in motion with a high efficiency. The transmitter coils are essentially supposed to be embedded in the road but are placed over the road for visual purposes. The receiver coil is placed under the EV. When the EV goes over the electric road, it gets dynamically recharged. A prototypic EMIR was successfully designed to demonstrate the Dynamic Wireless Power Transfer (DWPT) for EVs.


Electronics ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 676 ◽  
Author(s):  
KangHyun Yi

This paper proposes a new capacitive coupling wireless power transfer method for charging electric vehicles. Capacitive coupling wireless power transfer can replace conventional inductive coupling wireless power transfer because it has negligible eddy-current loss, relatively low cost and weight, and good misalignment performance. However, capacitive coupling wireless power transfer has a limitation in charging electric vehicles due to too small coupling capacitance via air with a very high frequency operation. The new capacitive wireless power transfer uses glass as a dielectric layer in a vehicle. The area and dielectric permittivity of a vehicle’s glass is large; hence, a high capacity coupling capacitor can be obtained. In addition, switching losses of a power conversion circuit are reduced by quasi-LLC resonant operation with two transformers. As a result, the proposed system can transfer large power and has high efficiency. A 1.6 kW prototype was designed to verify the operation and features of the proposed system, and it has a high efficiency of 96%.


Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7566
Author(s):  
Naireeta Deb ◽  
Rajendra Singh ◽  
Richard R. Brooks ◽  
Kevin Bai

The expansion of electric vehicles made the expansion of charging infrastructure rudimentary to keep up with this developing technology that helps people in a myriad of ways. The main drawback in electric vehicle charging, however, is the time consumed to charge a vehicle. The fast charging of electric vehicles solves this problem thus making it a lucrative technology for consumers. However, the fast charging technology is not without its limitations. In this paper we have identified the technology gaps in EV fast charging stations mostly focused on the extremely fast charging topology. It will help pave a path for researchers to direct their effort in a consolidated manner to contribute to the fast charging infrastructure. A thorough review of all aspects and limitations of existing extremely fast charging (XFC) stations have been identified and supporting data are provided. The importance of DC power network based on free fuel energy sources and silicon carbide-based power electronics are proposed to provide ultra-low cost and ultra-high speed XFC stations.


Author(s):  
А.М. САЖНЕВ ◽  
Л.Г. РОГУЛИНА

Приводятся результаты моделирования сверхскоростного буфера тактовых сигналов, выполненного на базе арсенид-галлиевых n-канальных транзисторов в среде OrCAD и полностью отвечающего следующим требованиям: высокие технические характеристики, малые размеры, высокая частота и КПД, гибкость применения. Приведенные поведенческие модели допускают использование любой программной среды по схемотехническому моделированию. The results of simulation of an ultra-high-speed clock signal buffer based on gallium arsenide n-channel transistors in OrCAD are presented, which fully meets the following requirements: high technical characteristics, application flexibility, low cost, small size, high frequency, and high efficiency. The given behavioral models allow the use of any software environment for circuit modeling.


2012 ◽  
Vol 468-471 ◽  
pp. 920-923
Author(s):  
Ya Ping Bao ◽  
Li Liu ◽  
Yuan Wang ◽  
Qian Song

This paper introduced a fast fingerprint identification system based on TMS320VC5416 DSP chip and MBF200 solidity fingerprint sensor. It precipitates fingerprint identification device developing into the direction of miniaturization, embedded and automatic.It recommends fingerprint identification system hardware and software design and the main system processing flow, aim at fingerprint identification arithmetic, the influence of system operation speed is being researched at the same time. High-speed data acquisition system is been built in order to achieve a DSP fingerprint identification system with high efficiency and low cost.


Author(s):  
Elias Brassitos ◽  
Constantinos Mavroidis ◽  
Brian Weinberg

Advanced robotics requires a new generation of actuators able to exhibit a number of desirable characteristics ranging from high power density and high efficiency, high positioning resolution, high torque capacity and torsional stiffness, lightweight designs and low-cost packages. In this paper, we present the development and the experimental evaluation of a new actuator, aimed at improving the torque density and mechanical efficiency of actuated robotic joints, and enhancing the portability and effectiveness of robotic systems engaged in biomechanical applications such as rehabilitation robots and wearable exoskeletons. The new actuator, called the Gear Bearing Drive (GBD), consists of a two-stage planetary gear arrangement coupled through the planets and driven by an external rotor brushless motor that is inscribed within the input stage sun gear. This planetary configuration enables for incredible high-speed reductions and allows for embedding the motor directly within the gearbox saving significant space on the actuator length. Our initial experimental prototypes have demonstrated impressive performance with the potential to deliver more than 30Nm of continuous torque with 85% mechanical efficiency and 0.0005 degree of backlash, and up to 200 rpm maximum output speed in a highly compact and robust package.


2019 ◽  
Vol 10 (4) ◽  
pp. 84 ◽  
Author(s):  
Stéphane Laporte ◽  
Gérard Coquery ◽  
Virginie Deniau ◽  
Alexandre De Bernardinis ◽  
Nicolas Hautière

In a context of growing electrification of road transport, Wireless Power Transfer (WPT) appears as an appealing alternative technology as it enables Electric Vehicles (EVs) to charge while driving and without any mechanical contact (with overhead cables or rails in the ground). Although the WPT technology background dates from the end of 20th century, recent advances in semiconductor technologies have enabled the first real demonstrations. Within the FABRIC European project, the French research Institute VEDECOM and its partners implemented a whole prototype wireless power transfer charging infrastructure. The first demonstrations of Inductive WPT in different real driving conditions (up to 20 kW, from 0 to 100 km/h, with one or two serial vehicles) were provided. This paper describes the prototype equipment and its instrumentation and provides the system characterization results. The future of the Inductive WPT technology is further discussed considering its different technical and economic challenges. In parallel, how this technology could be part of future generation road infrastructures is discussed. Future research and demonstration steps are presented in the conclusion.


Energies ◽  
2019 ◽  
Vol 12 (15) ◽  
pp. 2866
Author(s):  
Andong Yin ◽  
Shenchun Wu ◽  
Weihan Li ◽  
Jinfang Hu

As an attractive alternative to the traditional plug-in charged electric vehicles (EVs), wireless-charged EVs have recently been in the spotlight. Opportunistically charged utilizing the wireless-charging infrastructure installed under the road at bus stops, an electric bus can have a smaller and lighter battery pack. In this paper, an improved opportunistic wireless-charging system (OWCS) for electric bus is introduced, which includes the opportunistic stationary wireless-charging system (OSWCS) and opportunistic hybrid wireless-charging system (OHWCS) consisting of stationary wireless-charging and dynamic wireless-charging. A general battery reduction model is established for the opportunistic wireless-charged electric bus (OWCEB). Two different battery-reduction models are built separately for OWCEB on account of the characteristics of OSWCS and OHWCS. Additionally, the cost saving models including the production cost saving, the operation cost saving and total cost saving are established. Then, the mathematical models are demonstrated with a numerical example intuitively. Furthermore, we analyze several parameters that influence the effectiveness of battery reduction due to the application of an opportunistic wireless-charging system on an electric bus. Finally, some points worth discussing in this work are performed.


2014 ◽  
Vol 540 ◽  
pp. 403-406
Author(s):  
Gin Shan Chen ◽  
Zhi Yuan Chen

Since the urgent demands for high-speed broadband Internet, facilities originally installed in a unit-central office end are moved to the places close to the users in order to enhance the broadband and overcome the high-frequency attenuation of copper cables, such as cross connecting cabinets (CCC) on streets, and the lines between a unit-central office and CCC are changed to optical fiber cables. Network transmission technology has currently become the generation of optical fiber. To actually promote fiber to the home, the value-added services of high-speed Internet access, VoIP, and multimedia service for users are currently the highlighted telecommunications technology and businesses. Nevertheless, copper cables have been used for a long period of time that it would be costly to completely replace copper cables. Gradually replacing old cables with new ones is considered as the optimal strategy. Without constructing optical fiber lines at different places or completely removing copper cables, Automatic Handshaking Signal Module (AHSM) for a CCC developed in this study is considered economical and simple. It could monitor the signal handshaking through remote control and make structural and functional changes of existing copper-cable cross connecting cabinets for the low-cost and high-efficiency seamless technology transfer.


2013 ◽  
Vol 22 (02) ◽  
pp. 1250081 ◽  
Author(s):  
FAISAL T. ABU-NIMEH ◽  
FATHI M. SALEM

We present a low-cost, low-power, high efficiency, and portable integrated implementations of a lab-on-chip for magnetic molecular level sensing manipulation, and diagnosis. The design features an all-integrated programmable magnetic coil array for sensing and actuating small magnetic bead objects. The coil array is selectively and dynamically controlled using the smallest permissible vertical coil inductors in this technology. Each cell, composed of the coil and its logical control circuitry, can detect small objects in the order of 1 μm diameter as well as emit eight programmable magnetic field levels for manipulation. All array sensing and driving components are shared to reduce the overall imprint. They are tuned towards the 900 s MHz ISM band and incorporating high-speed serial row/column switching up to 40 MHz for seamless pseudo-parallel operation.


Sign in / Sign up

Export Citation Format

Share Document