Study of Gas Flow Through a Stirling Engine Regenerator

2017 ◽  
Author(s):  
E. Rogdakis ◽  
P. Bitsikas ◽  
G. Dogkas

In the present work, a three dimensional (3D) Computational Fluid Dynamics (CFD) analysis is applied to a designed small compact regenerator with specific porosity and wire diameter. The regenerator was studied as a part of a Stirling Engine designed in a simple way. The gas temperature along the regenerator followed an approximately linear profile, while the metal temperature showed a small deviation during the engine cycle. The heat transfer coefficient between the gas and the matrix of the regenerator, along with the associate heat transferred were also derived. The heat exchanged in the regenerator is significantly higher to the respective heat in the engine’s heater and cooler. Additionally, the pressure drop and the related energy dissipation are studied. Their variation is largely dependent on both mass flow-rate and working gas velocity. The friction factor coefficient for the designed regenerator is correlated with Reynolds number and an equation of two variables is derived. Finally, the results of the CFD simulation are compared to those produced by a one-dimensional numerical model. These results include gas mass, mass flow-rate and Reynolds number, as well as the heat transferred between the gas and the regenerator matrix. Except for the case of the exchanged heat, the deviation between the two approaches is very small.

2010 ◽  
Vol 132 (4) ◽  
Author(s):  
Yoon Jo Kim ◽  
Yogendra K. Joshi ◽  
Andrei G. Fedorov ◽  
Young-Joon Lee ◽  
Sung-Kyu Lim

It is now widely recognized that the three-dimensional (3D) system integration is a key enabling technology to achieve the performance needs of future microprocessor integrated circuits (ICs). To provide modular thermal management in 3D-stacked ICs, the interlayer microfluidic cooling scheme is adopted and analyzed in this study focusing on a single cooling layer performance. The effects of cooling mode (single-phase versus phase-change) and stack/layer geometry on thermal management performance are quantitatively analyzed, and implications on the through-silicon-via scaling and electrical interconnect congestion are discussed. Also, the thermal and hydraulic performance of several two-phase refrigerants is discussed in comparison with single-phase cooling. The results show that the large internal pressure and the pumping pressure drop are significant limiting factors, along with significant mass flow rate maldistribution due to the presence of hot-spots. Nevertheless, two-phase cooling using R123 and R245ca refrigerants yields superior performance to single-phase cooling for the hot-spot fluxes approaching ∼300 W/cm2. In general, a hybrid cooling scheme with a dedicated approach to the hot-spot thermal management should greatly improve the two-phase cooling system performance and reliability by enabling a cooling-load-matched thermal design and by suppressing the mass flow rate maldistribution within the cooling layer.


Author(s):  
Assunta Andreozzi ◽  
Vincenzo Naso ◽  
Oronzio Manca

In this study a numerical investigation of mixed convection in air in horizontal parallel walled channels with moving lower plate is carried out. The moving lower plate has a constant velocity and it is adiabatic, whereas the upper one is heated at uniform heat flux. The effects of horizontal channel height, heat flux and moving plate velocity are analyzed. Results in terms of temperature and stream function fields are given and the mass flow rate per unit of length and divided by the dynamic viscosity is reported as a function of Reynolds number based on the moving plate velocity. For stationary condition of lower plate, a typical C–loop inside the horizontal channel is detected. Different flow motions are observed in the channel and the two reservoirs, depending on the heat flux values and the distance between the heated upper stationary plate and lower adiabatic moving plate. The dimensionless induced mass flow rate presents different increase between the Reynolds number lower or greater than 1000.


Author(s):  
Yang Chen ◽  
Jun Li ◽  
Chaoyang Tian ◽  
Gangyun Zhong ◽  
Xiaoping Fan ◽  
...  

The aerodynamic performance of three-stage turbine with different types of leakage flows was experimentally and numerically studied in this paper. The leakage flows of three-stage turbine included the shroud seal leakage flow between the rotor blade tip and case, the diaphragm seal leakage flow between the stator blade diaphragm and shaft, as well as the shaft packing leakage flow and the gap leakage flow between the rotor blade curved fir-tree root and wheel disk. The total aerodynamic performance of three-stage turbine including leakage flows was firstly experimentally measured. The detailed flow field and aerodynamic performance were also numerically investigated using three-dimensional Reynolds-Averaged Navier-Stokes (RANS) and S-A turbulence model. The numerical mass flow rate and efficiency showed well agreement with experimental data. The effects of leakage flows between the fir-tree root and the wheel disk were studied. All leakage mass flow fractions, including the mass flow rate in each hole for all sets of root gaps were given for comparison. The effect of leakage flow on the aerodynamic performance of three-stage was illustrated and discussed.


Author(s):  
Mengying Shu ◽  
Mingyang Yang ◽  
Ricardo F. Martinez-Botas ◽  
Kangyao Deng ◽  
Lei Shi

The flow in intake manifold of a heavily downsized internal combustion engine has increased levels of unsteadiness due to the reduction of cylinder number and manifold arrangement. The turbocharger compressor is thus exposed to significant pulsating backpressure. This paper studies the response of a centrifugal compressor to this unsteadiness using an experimentally validated numerical method. A computational fluid dynamic (CFD) model with the volute and impeller is established and validated by experimental measurements. Following this, an unsteady three-dimensional (3D) simulation is conducted on a single passage imposed by the pulsating backpressure conditions, which are obtained by one-dimensional (1D) unsteady simulation. The performance of the rotor passage deviates from the steady performance and a hysteresis loop, which encapsulates the steady condition, is formed. Moreover, the unsteadiness of the impeller performance is enhanced as the mass flow rate reduces. The pulsating performance and flow structures near stall are more favorable than those seen at constant backpressure. The flow behavior at points with the same instantaneous mass flow rate is substantially different at different time locations on the pulse. The flow in the impeller is determined by not only the instantaneous boundary condition but also by the evolution history of flow field. This study provides insights in the influence of pulsating backpressure on compressor performance in actual engine situations, from which better turbo-engine matching might be benefited.


Author(s):  
Rayapati Subbarao ◽  
M. Govardhan

Abstract In a Counter Rotating Turbine (CRT), the stationary nozzle is trailed by two rotors that rotate in the opposite direction to each other. Flow in a CRT stage is multifaceted and more three dimensional, especially, in the gap between nozzle and rotor 1 as well as rotor 1 and rotor 2. By varying this gap between the blade rows, the flow and wake pattern can be changed favorably and may lead to improved performance. Present work analyzes the aspect of change in flow field through the interface, especially the wake pattern and deviation in flow with change in spacing. The components of turbine stage are modeled for different gaps between the components using ANSYS® ICEM CFD 14.0. Normalized flow rates ranging from 0.091 to 0.137 are used. The 15, 30, 50 and 70% of the average axial chords are taken as axial gaps in the present analysis. CFX 14.0 is used for simulation. At nozzle inlet, stagnation pressure boundary condition is used. At the turbine stage or rotor 2 outlet, mass flow rate is specified. Pressure distribution contours at the outlets of the blade rows describe the flow pattern clearly in the interface region. Wake strength at nozzle outlet is more for the lowest gap. At rotor 1 outlet, it is less for x/a = 0.3 and increases with gap. Incidence angles at the inlets of rotors are less for the smaller gaps. Deviation angle at the outlet of rotor 1 is also considered, as rotor 1-rotor 2 interaction is more significant in CRT. Deviation angle at rotor 1 outlet is minimum for this gap. Also, for the intermediate mass flow rate of 0.108, x/a = 0.3 is giving more stage performance. This suggests that at certain axial gap, there is better wake convection and flow outline, when compared to other gap cases. Further, it is identified that for the axial gap of x/a = 0.3 and the mean mass flow rate of 0.108, the performance of CRT is maximum. It is clear that the flow pattern at the interface is changing the incidence and deviation with change in axial gap and flow rate. This study is useful for the gas turbine community to identify the flow rates and gaps at which any CRT stage would perform better.


Materials ◽  
2004 ◽  
Author(s):  
Hui-Shan Li ◽  
Xi-Chen Yang ◽  
Chun-Xian Wang

In this paper, the powders transportation in laser cladding repairing during the coaxial powder-feeding was evaluated. The theoretical evaluation is based on a two-fluid approach in which both the gas and particulate phase is treated each phase separately, and the only link between the phases is through the drag force in the momentum equations. The particles velocities are calculated with changes of the gas flow and mass flow rate. This is important for the coaxial nozzle and the carrier-gas powder transportation equipment characteristics determined. An experimentally of the influence of carrying gas on the powder stream was set up. The gas-particles flowing from the nozzle was illuminated by a 2D sheet of light. A typical image from the CCD camera is captured. The axial velocity and cross section were described. According to the results, it was found that: (1) Different mass flow rate Mp=0.5g/s, 0.67g/s, 0.83g/s, 1g/s, the powder stream luminance intensity and distribution will change. (2) The distribution of powder concentration at longitudinal axis from the nozzle exit is shown. The faster particulates stream has the less density per unit volume for a given mass flow rate. (3) The gas velocity for transportation is the most important parameter.


Micromachines ◽  
2020 ◽  
Vol 11 (3) ◽  
pp. 323 ◽  
Author(s):  
Jojomon Joseph ◽  
Danish Rehman ◽  
Michel Delanaye ◽  
Gian Luca Morini ◽  
Rabia Nacereddine ◽  
...  

Miniaturized heat exchangers are well known for their superior heat transfer capabilities in comparison to macro-scale devices. While in standard microchannel systems the improved performance is provided by miniaturized distances and very small hydraulic diameters, another approach can also be followed, namely, the generation of local turbulences. Localized turbulence enhances the heat exchanger performance in any channel or tube, but also includes an increased pressure loss. Shifting the critical Reynolds number to a lower value by introducing perturbators controls pressure losses and improves thermal efficiency to a considerable extent. The objective of this paper is to investigate in detail collector performance based on reduced-order modelling and validate the numerical model based on experimental observations of flow maldistribution and pressure losses. Two different types of perturbators, Wire-net and S-shape, were analyzed. For the former, a metallic wire mesh was inserted in the flow passages (hot and cold gas flow) to ensure stiffness and enhance microchannel efficiency. The wire-net perturbators were replaced using an S-shaped perturbator model for a comparative study in the second case mentioned above. An optimum mass flow rate could be found when the thermal efficiency reaches a maximum. Investigation of collectors with different microchannel configurations (s-shaped, wire-net and plane channels) showed that mass flow rate deviation decreases with an increase in microchannel resistance. The recirculation zones in the cylindrical collectors also changed the maldistribution pattern. From experiments, it could be observed that microchannels with S-shaped perturbators shifted the onset of turbulent transition to lower Reynolds number values. Experimental studies on pressure losses showed that the pressure losses obtained from numerical studies were in good agreement with the experiments (<4%).


Author(s):  
Pablo Fernández del Campo ◽  
Fletcher Miller ◽  
Adam Crocker

We present an investigation of the effects of the solar irradiation and mass flow conditions on the behavior of a Small Particle Solar Receiver employing our new, three-dimensional coupled fluid flow and radiative heat transfer model. This research expands on previous work conducted by our group and utilizes improved software with a set of new features that allows performing more flexible simulations and obtaining more accurate results. For the first time, it is possible not only to accurately predict the overall efficiency and the wall temperature distribution of the solar receiver, but also to determine the effect on the receiver of the window, the outlet tube, real solar irradiation from a heliostat field, non-cylindrical geometries and 3-D effects. This way, a much better understanding of the receiver’s capabilities is obtained. While the previous models were useful to observe simple trends, this new software is flexible and accurate enough to eventually act as a design and optimization tool for the actual receiver. The solution procedure relies on the coupling of the CFD package ANSYS Fluent to our in-house Monte Carlo Ray Trace (MCRT) software. On the one hand, ANSYS Fluent is utilized as the mass-, momentum- and energy-equation solver and requires the divergence of the radiative heat flux, which constitutes a source term of the energy equation. On the other hand, the MCRT software calculates the radiation heat transfer in the solar receiver and needs the temperature field to do so. By virtue of the coupled nature of the problem, both codes should provide feed-back to each other and iterate until convergence. The coupling between ANSYS Fluent and our in-house MCRT code is done via User-Defined Functions. After developing the mathematical model, setting up and validating the software, and optimizing the coupled solution procedure, the receiver has been simulated under fifteen different solar irradiation and mass flow rate cross combinations. Among other results, the behavior of the receiver at different times of the day and the optimum mass flow rate as a function of the solar thermal input are presented. On an average day, the thermal efficiency of the receiver is found to be over 89% and the outlet temperature over 1250 K at all times from 7:30 AM to 4:00 PM (Albuquerque, NM) by properly adapting the mass flow rate. The origin of the losses and how to improve the efficiency of the Small Particle Solar Receiver are discussed as well.


1968 ◽  
Vol 33 (1) ◽  
pp. 131-149 ◽  
Author(s):  
John H. Neilson ◽  
Alastair Gilchrist

Among the parameters which determine the erosion damage sustained by the walls of a nozzle, in which a mixture of gas and particles is flowing is the speed attained by the particle before collision with the wall surface. This work is concerned with the determination of the particle velocity, and a number of relationships are given from which the variation in particle velocity can be obtained for a variety of gas conditions. The changes of state and velocity of the gas, occasioned by the interchange of heat and work between the gas and the particles are dependent on the ratio of the mass flow rate of particles to the mass flow rate of gas. It is shown that if this ratio is small the particle velocity may be obtained without serious error by assuming that the gas conditions are not affected by the presence of particles. Figures for the limiting value of this ratio for certain flows are given. The effects of particle size, density and initial relative velocity are investigated analytically and experimentally.


Sign in / Sign up

Export Citation Format

Share Document