Motion and Gesture Compliance Control for High Performance of a Wheeled Humanoid Robot

Author(s):  
Salvador Rojas ◽  
He Shen ◽  
Holly Griffiths ◽  
Ni Li ◽  
Lanchun Zhang

Humanoid robots have the potential to help or even take the place of humans working in extreme or undesirable environments. Wheeled humanoids are robots that combine the mobility of mobile platforms, and the dexterity of an articulated body with two robotic arms. To perform like a human being, these robots normally are designed with a high center of mass, which makes it challenging to maintain stability while achieving high performance on complex and unpredictable terrain. Inspired from how humans react to balance themselves, a compliance control method is studied to help the wheeled humanoid robot developed at the Robotics Laboratory at Cal State LA achieve high dynamic performance while scouting over uneven terrain. Lagrange-Euler method is used to obtain the dynamic model of the humanoid robot. Then a nonlinear sliding mode compliance controller is derived and proven to ensure asymptotic stability of the humanoid robot while tracking desired reference trajectories. Finally, the performance of the proposed compliance control system is demonstrated using simulation. The results show that the robot successfully tracks a given input while maintaining balance based on the proposed tip-over avoidance algorithm.

2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Xiaoqi Song ◽  
Dezhi Xu ◽  
Weilin Yang ◽  
Yan Xia ◽  
Bin Jiang

As a kind of special motors, linear induction motors (LIM) have been an important research field for researchers. However, it gives a great velocity control challenge due to the complex nonlinearity, high coupling, and unique end effects. In this article, an improved model-free adaptive sliding-mode-constrained control method is proposed to deal with this problem dispensing with internal parameters of the LIM. Firstly, an improved compact form dynamic linearization (CFDL) technique is used to simplify the LIM plant. Besides, an antiwindup compensator is applied to handle the problem of the actuator under saturations in case during the controller design. Furthermore, the stability of the closed system is proved by Lyapunov stability method theoretically. Finally, simulation results are given to demonstrate that the proposed controller has excellent dynamic performance and stronger robustness compared with traditional PID controller.


Author(s):  
Zhongda Tian ◽  
◽  
Xianwen Gao ◽  
Peiqin Guo ◽  

A teleoperation robot system is connected through a network. However, stochastic delay in such a network can affect its performance, or even make the system unstable. To solve this problem, this paper proposes a teleoperation robot system control method based on fuzzy sliding mode. In the proposed method, a delay generator generates variable delay conforming to a shift gamma distribution designed to simulate actual network delay. In addition, a proposed fuzzy sliding mode controller based on switching gain adjustment is used to rectify the chattering phenomenon in the sliding mode controller of the teleoperation robot system. In the controller, the master hand uses impedance control and realizes feedback from the slave hand. Controller simulation comparison results show that the proposed fuzzy sliding mode controller effectively eliminates the sliding mode control chattering phenomenon as the slave hand stabilizes the tracking velocity of the master hand. Consequently, the system exhibits improved dynamic performance.


2012 ◽  
Vol 09 (02) ◽  
pp. 1250008 ◽  
Author(s):  
TEPPEI TSUJITA ◽  
ATSUSHI KONNO ◽  
SHUNSUKE KOMIZUNAI ◽  
YUKI NOMURA ◽  
TOMOYA MYOJIN ◽  
...  

In order to exert a large force on an environment, it is effective to apply impulsive force. We describe the motions in which tasks are performed by applying impulsive force as "impact motions." This paper proposes a way to generate impact motions for humanoid robots to exert a large force and the feedback control method for driving a nail robustly. The impact motion is optimized based on a three dimensional model using sequential quadratic programming (SQP). In this research, a nailing task is taken as an example of impact motion. A dominant parameter for driving a nail strongly is revealed and motions which maximize the parameter are generated considering the robot's postural stability. In order to evaluate the proposed scheme, a life-sized humanoid robot drives nails into a plate made of chemical wood. The optimized motion is compared with a motion designed heuristically by a human. Average driving depth is clearly increased by the proposed method.


2021 ◽  
Vol 13 (9) ◽  
pp. 168781402110454
Author(s):  
Ruinan Chen ◽  
Jian Ou

In this paper, a hybrid fault-tolerant control strategy is putted forward to improve the stability of the four-wheel independent drive (4WID) electric vehicle with motor failures. To improve the handling performance of the vehicle with in-wheel motor failures, the faults of in-wheel motors are analyzed and modeled. Then, a model reference adaptive fault observer was designed to observe the faults in real-time. Based on the observation results, there are designed a model predictive control (MPC) based high-performance active fault-tolerant control (AFTC) strategy and a sliding mode control based high-robust passive fault-tolerant control (PFTC) strategy. However, the fault observation results may not always be accurately. For this circumstance, a hybrid fault-tolerant control strategy was designed to make the control method find a balance between optimality and robustness. Finally, a series of simulations are conducted on a hardware-in-loop (HIL) real-time simulator, the simulation results show that the control strategy designed in this paper is effectiveness.


2021 ◽  
Vol 15 ◽  
Author(s):  
Qiubo Zhong ◽  
Yaoyun Li ◽  
Caiming Zheng ◽  
Tianyao Shen

The implementation of low-energy cooperative movements is one of the key technologies for the complex control of the movements of humanoid robots. A control method based on optimal parameters is adopted to optimize the energy consumption of the cooperative movements of two humanoid robots. A dynamic model that satisfies the cooperative movements is established, and the motion trajectory of two humanoid robots in the process of cooperative manipulation of objects is planned. By adopting the control method with optimal parameters, the parameters optimization of the energy consumption index function is performed and the stability judgment index of the robot in the movement process is satisfied. Finally, the effectiveness of the method is verified by simulations and experimentations.


2008 ◽  
Vol 381-382 ◽  
pp. 195-198 ◽  
Author(s):  
Yoshikazu Arai ◽  
S.Y. Dian ◽  
Wei Gao

In this study, a novel control law including a fine-tuned PID component to yield basic dynamic performance, and a component derived from the Sliding Mode Observer (SMO) to estimate and then compensate for modeling uncertainties and disturbances, has been introduced to planar actuator of an ultra-precision positioning stage. Experimental results are presented to verify the effectiveness of suggested dynamic compensation strategy and tracking performance of the non-contact planar actuator.


Author(s):  
Wending Li ◽  
Guanglin Shi

The paper proposes a novel dual-redundancy motor pump for the electro-hydrostatic actuator. Rather than the traditional single motor pump electro-hydrostatic actuator system, the system proposed in this paper can operate in three working modes and automatically adjust its operating condition in accordance with task requirements. The novel dual-redundancy electro-hydrostatic actuator system prototype was developed, and a high-performance control method was proposed and applied to the system, combining proportional–integral–derivative and sliding mode control to study the control strategy and implementation method of double closed loop. In addition, a physical model simulation was conducted on the basis of Amesim for this electro-hydrostatic actuator under several working conditions. Results showed that the dual-redundancy electro-hydrostatic actuator can decrease power loss and demonstrate excellent performance and reliability.


2020 ◽  
Vol 10 (9) ◽  
pp. 3010 ◽  
Author(s):  
Quang Vinh Doan ◽  
Anh Tuan Vo ◽  
Tien Dung Le ◽  
Hee-Jun Kang ◽  
Ngoc Hoai An Nguyen

This paper comes up with a novel Fast Terminal Sliding Mode Control (FTSMC) for robot manipulators. First, to enhance the response, fast convergence time, against uncertainties, and accuracy of the tracking position, the novel Fast Terminal Sliding Mode Manifold (FTSMM) is developed. Then, a Supper-Twisting Control Law (STCL) is applied to combat the unknown nonlinear functions in the control system. By using this technique, the exterior disturbances and uncertain dynamics are compensated more rapidly and more correctly with the smooth control torque. Finally, the proposed controller is launched from the proposed sliding mode manifold and the STCL to provide the desired performance. Consequently, the stabilization and robustness criteria are guaranteed in the designed system with high-performance and limited chattering. The proposed controller runs without a precise dynamic model, even in the presence of uncertain components. The numerical examples are simulated to evaluate the effectiveness of the proposed control method for trajectory tracking control of a 3-Degrees of Freedom (DOF) robotic manipulator.


2008 ◽  
Vol 05 (03) ◽  
pp. 353-373 ◽  
Author(s):  
REO MATSUMURA ◽  
HIROSHI ISHIGURO

The RoboCup, which is a worldwide robot soccer competition, has set an ambitious goal for itself: to have a humanoid robot team win against human teams in World Cup Soccer by 2050. In order to achieve this goal, the robots require highly sophisticated sensory-data processing and decision-making functions. The development of robots for the RoboCup Humanoid League also has significant meaning for the development of robotics. However, this development is not easy and there are few papers covering it and its design policy. This paper reports the design policy for humanoids developed by Team Osaka, whose robots have been selected as the best humanoid robots four times in the last four years. In addition to the design policy, this paper also reports on the developmental process and comparisons among humanoid versions developed by Team Osaka. We believe that this paper will offer much information to other researchers who are developing humanoids for the RoboCup.


Sign in / Sign up

Export Citation Format

Share Document