scholarly journals Numerical Investigation of the Performance of a Submersible Pump: Prediction of Recirculation, Vortex Formation, and Swirl Resulting from Off-Design Operating Conditions

Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 5082
Author(s):  
Virgel M. Arocena ◽  
Binoe E. Abuan ◽  
Joseph Gerard T. Reyes ◽  
Paul L. Rodgers ◽  
Louis Angelo M. Danao

Like any other turbomachinery, it is essential that the hydraulic behavior and performance of mixed-flow pumps are evaluated way in advance prior to manufacturing. Pump performance relies heavily on the proper design of the intake structure. Intake structures should be accurately designed in order to minimize and avoid unnecessary swirl and vortex formations. Ensuring the optimum performance condition as well as predicting how a particular intake structure affects the efficiency of the pump often requires either physical model studies or theoretical evaluations. Unfortunately, physical models are costly, time-consuming, and site-specific. Conversely, design and performance predictions using a theoretical approach merely gives performance values or parameters, which are usually unable to determine the root cause of poor pump performance. This study evaluates the viability of using Computational Fluid Dynamics (CFD) as an alternative tool for pump designers and engineers in evaluating pump performance. A procedure for conducting CFD simulations to verify pump characteristics such as head, efficiency, and flow as an aid for preliminary pump design is presented. Afterwards, a multiphase simulation using the VOF approach is applied to compare the fluid dynamics between four different pump intake structures. A full-sized CFD model of the pump sump complete with the pump’s active components was used for the intake structure analysis in order to avoid scaling issues encountered during the reduced-scale physical model test. The results provided a clear illustration of the hydraulic phenomena and characteristic curves of the pump. A performance drop in terms of reduction in TDH was predicted across the various intake structure designs. The CFD simulation of intake structure provided a clear insight on the varying degree of swirl, flow circulation, and effect on pump efficiency between all four cases.

2011 ◽  
Vol 90-93 ◽  
pp. 2363-2371
Author(s):  
Bin Wei Xia ◽  
Ke Hu ◽  
Yi Yu Lu ◽  
Dan Li ◽  
Zu Yong Zhou

Physical models of layered rock mass with different dip angles are built by physical model test in accordance with the bias failure characteristics of surrounding rocks of layered rock mass in Gonghe Tunnel. Bias failure characteristics of surrounding rocks in thin-layered rock mass and influences of layered rock mass dip angle on stability of tunnel are studied. The research results show that failure characteristics of physical models generally coincide with those of surrounding rocks monitored from the tunnel site. The failure regions of surrounding rock perpendicular to the stratification planes are obviously larger than those parallel to. The stress distributions and failure characteristics in the surrounding rocks are similar to each physical model of different dip angles. The stress distributions and failure regions are all elliptic in shape, in which the major axis is in the direction perpendicular to the stratification planes while the minor axis is parallel to them. As a result, obvious bias failure of surrounding rocks has gradually formed. The physical model tests provide reliable basis for theoretical analysis on the failure mechanism of deep-buried layered rock mass.


Author(s):  
A. M. Chernyavskiy ◽  
T. M. Ruzmatov ◽  
A. V. Fomichev ◽  
A. E. Medvedev ◽  
Yu. M. Prikhodko ◽  
...  

Aim. Experimental evaluation of the viscous friction disk pump efficiency, studying the relationship between inter-disk clearance and sizes of input and output ports and pump performance parameters.Materials and methods. To assess the characteristics and to optimize the disk friction pump design the pump model and experimental stand were created. Pump dimensions were set on the basis of medical and biological requirements for mechanical heart support systems and with due consideration of the experimental studies of our colleagues from Pennsylvania. Flow volume of the working fluid was measured by float rotameter Krohne VA-40 with measurement error of not more than 1%. The pressure values in the hydrodynamic circuit were measured using a monitor manufactured by Biosoft-M. Expansion device allowed changing the flow resistance of the system simulating the total peripheral resistance of the circulatory system.Results. Linear direct correlation between the pump performance and the pressure drop of liquid being created at the inlet and outlet of the pump was obtained. The required flow rate (5–7 l/min) and pressure (90–100 mmHg) were reached when the rotor speed was in the range of 2500–3000 rev/min. It has been shown that the increase of the inlet diameter to 15 mm has not resulted in a significant increase in the pump performance, and that the highest efficiency values can be obtained for the magnitude of inter-disk gap of 0.4–0.5 mm.Conclusion. Designed and manufactured experimental disc pump model for pumping fluid has showed the fundamental possibility to use this model as a system for mechanical support of the heart.


Author(s):  
Zhengjing Shen ◽  
Wuli Chu

Sediment erosion is recognized as a serious engineering problem in slurry handling such as screw centrifugal pump, which has wide efficiency region and non-plugging performance. In the present study, the screw centrifugal pump was simulated based on the Euler-Lagrange method. The Mclaury model was adopted for the erosion prediction of flow passage components. By analyzing the correlation factor functions contained in the erosion model and performing some preliminary research with a simplified model, particle velocity, particle shape factor and particle concentration were selected as the influencing factors to analysis the quantitative relationship among particle parameters, erosion wear and performance of screw centrifugal pump. The results show that the erosion of volute casing is higher than impeller, and the erosion rate of suction side is higher than pressure side. The particles velocity is positively correlated with erosion wear and pump performance reduction rate. While the increase of particles shape factor shows the opposite trend. Erosion rate is found to be increases sharply and then slowly when particles concentration increases, because of the adhesion effect of sand particles in the volute casing inhibits the total erosion wear. The increase of erosion rate promoted the reduction rate of pump performance, and the pump efficiency decreased more significantly when the erosion rate increased to a certain extent. The results of this study are of great significance for further optimization of hydraulic design and structural design for screw centrifugal pump.


2015 ◽  
Author(s):  
C. Oldfield ◽  
M. Moradi Larmaei ◽  
A. Kendrick ◽  
K. McTaggart

Verification and validation has been completed for the use of computational fluid dynamics as a practical means of simulating captive manoeuvring model tests. Verification includes spatial and temporal refinement studies. Direct validation includes the comparison of individual steady drift and planar motion mechanism simulations to physical model test data. Rotating arm simulations are validated indirectly on the basis of manoeuvring derivatives developed from the PMM tests. The merits of steady and unsteady simulations are discussed.


2021 ◽  
pp. 1-9
Author(s):  
Shreyas V. Jalikop ◽  
Bernhard Scheichl ◽  
Stefan J. Eder ◽  
Stefan Hönig

Summary Artificial lift systems are widely used in oil production, of which sucker rod pumps are conceptually among the simpler ones. The reciprocating movement of the plunger triggers the opening and closing of two ball valves, allowing fluid to be pumped to the surface. Their built-in ball valves are subject to long-time erosion and fail as a consequence of this damage mechanism. Understanding the principal damage mechanisms requires a thorough examination of the fluid dynamics during the opening and closing action of these valves. In this article, we present a fluid-structure interaction model that simultaneously computes the fluid flow in the traveling valve (TV), the standing valve (SV), and the chamber of sucker rod pumps during a full pump cycle. The simulations shed light on the causes of valve damage for standard and nonideal operating conditions of the pump. In particular, our simulations based on real pump operating envelopes reveal that the so-called “midcycle valve closure” is likely to occur. Such additional closing and opening events of the valves multiply situations in which the flow conditions are harmful to the individual pump components, leading to efficiency reduction and pump failure. This mechanism, hitherto unreported in the literature, is believed to constitute the primary cause of long-term valve damage. Our finite element method-based computational-fluid-dynamics model can accurately describe the opening and closing cycles of the two valves. For the first time, this approach allows an analysis of real TV speed versus position plots, usually called pump cards. The effects of stroke length, plunger speed, and fluid parameters on the velocity and pressure at any point and time inside the pump can thus be investigated. Identifying the damage-critical flow parameters can help suggest measures to avoid unfavorable operating envelopes in future pump designs. Our flow model may support field operations throughout the entire well life, ranging from improved downhole pump design to optimized pump operation or material selections. It can aid the creation of an ideal interaction between the valves, thus avoiding midcycle valve closure to drastically extend the mean time between failures of sucker rod pumps. Finally, our simulation approach will speed up new pump component development while greatly reducing the necessity for costly laboratory testing.


Energies ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 6136
Author(s):  
Virgel M. Arocena ◽  
Binoe E. Abuan ◽  
Joseph Gerard T. Reyes ◽  
Paul L. Rodgers ◽  
Louis Angelo M. Danao

Pump intake structure design is one area where physical models still remain as the only acceptable method that can provide reliable engineering results. Ensuring the amount of turbulence, entrained air vortices, and swirl are kept within acceptable limits requires site-specific, expensive, and time-consuming physical model studies. This study aims to investigate the viability of Computational Fluid Dynamics (CFD) as an alternative tool for pump intake design thus reducing the need for extensive physical experiments. In this study, a transient multiphase simulation of a 530 mm wide rectangular intake sump housing a 116 m3/h pump is presented. The flow conditions, vortex formation and inlet swirl are compared to an existing 1:10 reduced scaled physical model test. For the baseline test, the predicted surface and submerged vortices agreed well with those observed in the physical model. Both the physical model test and the numerical model showed that the initial geometry of the pump sump is unacceptable as per ANSI/HI 9.8 criteria. Strong type 2 to type 3 submerged vortices were observed at the floor of the pump and behind the pump. Consequently, numerical simulations of proposed sump design modification are further investigated. Two CFD models with different fillet-splitter designs are evaluated and compared based on the vortex formation and swirl. In the study, it was seen that a trident-shaped splitter design was able to prevent flow separation and vortex suppression as compared to a cross-baffle design based on ANSI/HI 9.8. CFD results for the cross-baffle design showed that backwall and floor vortices were still present and additional turbulence was observed due to the cross-flow caused by the geometry. Conversely, CFD results for the trident-shaped fillet-splitter design showed stable flow and minimized the floor and wall vortices previously observed in the first two models.


2012 ◽  
Vol 468-471 ◽  
pp. 2357-2363
Author(s):  
Bo Hu ◽  
Shou Qi Yuan ◽  
Wei Gang Lu ◽  
Jian Ping Yuan ◽  
Lei Li

Three experiment factors including outlet blade angle β2, b2 and impeller wrapping angle θ are selected for optimal design of a non-overload pump. Numerical simulation with CFD is employed to reduce the cost and shorten the design period. The time-averaged Navier-Stokes equations of 3D steady flow in the pump are calculated by CFD based on the SST k-ω turbulence model and standard wall function. The structured grids of different qualities are used in one scheme for comparison to confirm that the results are not influenced by the quality of mesh. The optimal scheme is obtained when β2, b2, θ are 20 degrees, 7mm, 170 degrees, respectively. Its pressure head is 89.75m achieving the pump efficiency of 57% at maximum. The performances of NCPs at other working conditions satisfy the requirement of heads and efficiencies from China National Standard. The shaft power reaches to 15kW at 1.5QR (35.5m3/h), showing that the non-overload performance is also significantly improved. The impeller is considered as the optimal scheme and produced for experiments. Experiment data prove that it is effective and reliable to improve a non-overload pump’s performance by maximum flow design method and non-overload pump design method. The results provide a reference for increasing the efficiencies and pressure heads of non-overload pumps at multiple operating conditions.


Author(s):  
Susanta K. Das

Centrifugal pumps vane geometry plays an important role in pump’s overall performance. Thus, to know the impeller vane geometry effects on the performance of a centrifugal pump are essential from pump’s design point of view. In this study, an experimental investigation is carried out to judge the impeller vane geometry effects on the performance of a centrifugal pump. The performance of three different impeller vane geometries is evaluated in this investigation. To acquire pump performance and characteristics curves, inlet and outlet valves were manually adjusted and the pump’s rpm were varied remotely through computer control. The pressure data were obtained via installed flow rotameter for different flow rates with constant pump speed – 1800 rpm. Experimental data were used to calculate different physical parameters, such as the pump head, water horsepower — the power added to the fluid, power input to the pump–brake horse power, and pump efficiency for each of impeller vane geometries. The pump’s performance curves and the system curves were then plotted for each of the vane geometries. The results show that the pump performance as well as efficiency varies significantly for each of the impeller vane geometries. The results help to understand how to determine appropriate operating conditions and design parameters for different impeller vane geometries for obtaining optimized pump performance.


2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Lei Zheng ◽  
Xiaodong Wu ◽  
Guoqing Han ◽  
Huachang Li ◽  
Yi Zuo ◽  
...  

As the metallic stator progressing cavity pump (PCP) operates with the stator and rotor in clearance fit, the slippage between cavities has a significant influence on the pump performance. In this paper, an analytical model is developed for the flow in the metallic stator PCP. Based on the analyses of the meshing movement and the clearance geometry inside the pump, the slippage through the transversal and longitudinal sealing regions is calculated considering different slippage mechanisms. Then the flow rate is obtained by subtracting the total slippage from the theoretical volumetric rate. This model is validated against results obtained from the performance experiments of commercial metallic stator PCP products from Shihong Petroleum Equipment Company. The model results show that the metallic stator PCP with smaller clearance or more stages is more capable of achieving good performance at high differential pressure. It is suitable for pumping the fluid with certain viscosity, and the influence of the slippage can be compensated by adopting appropriate high rotational speed. Furthermore, the model can be used to predict the pump performance and provide guidance for the pump design and performance optimization in field applications.


Author(s):  
G. Lara-Rodriguez ◽  
O. Begovich ◽  
J. L. Naredo

In a Liquefied Petroleum Gas (LPG) plant, the gas is received, stored, and finally, pumped to tanker trucks for distribution to consumers. In the pumping stage, a reduction in the efficiency of the pump for values below the density of the LPG is observed. As an option to resolve this problem when pumping LPG with varying density, this analysis evaluates a temperature control system in the plant’s pipeline by means of the installation of heat exchange equipment, attempting to reduce the temperature of the LPG. The theoretical data that the density of the liquid corresponds to 0.540kg/m3 at 288.65K is taken into account, supposing that if the temperature of the liquid can be reduced, the density of the LPG can be increased, thus improving the efficiency of the pump. In this research, a methodology of dimensional analysis is used to combine real operating conditions and simulations on commercial grade Computational Fluid Dynamics (CFD) software; it is proposed to cool the liquid gas stored in the LPG plant during its trajectory from the storage spheres to the pumping equipment. Therefore, the research being reported in this paper focuses on a modification to the LPG pumping process, installing a heat exchanger as an alternative or means to compensate for the loss of efficiency in LPG pumps and evaluating its application in the hydrocarbons industry.


Sign in / Sign up

Export Citation Format

Share Document