scholarly journals Beam Hardening Artifact Reduction in X-Ray CT Reconstruction of 3D Printed Metal Parts Leveraging Deep Learning and CAD Models

Author(s):  
Amirkoushyar Ziabari ◽  
Singanallur Venkatakrishnan ◽  
Michael Kirka ◽  
Paul Brackman ◽  
Ryan Dehoff ◽  
...  

Abstract Nondestructive evaluation (NDE) of additively manufactured (AM) parts is important for understanding the impacts of various process parameters and qualifying the built part. X-ray computed tomography (XCT) has played a critical role in rapid NDE and characterization of AM parts. However, XCT of metal AM parts can be challenging because of artifacts produced by standard reconstruction algorithms as a result of a confounding effect called “beam hardening.” Beam hardening artifacts complicate the analysis of XCT images and adversely impact the process of detecting defects, such as pores and cracks, which is key to ensuring the quality of the parts being printed. In this work, we propose a novel framework based on using available computer-aided design (CAD) models for parts to be manufactured, accurate XCT simulations, and a deep-neural network to produce high-quality XCT reconstructions from data that are affected by noise and beam hardening. Using extensive experiments with simulated data sets, we demonstrate that our method can significantly improve the reconstruction quality, thereby enabling better detection of defects compared with the state of the art. We also present promising preliminary results of applying the deep networks trained using CAD models to experimental data obtained from XCT of an AM jet-engine turbine blade.

2021 ◽  
Author(s):  
Amir Ziabari ◽  
Singanallur Venkatakrishnan ◽  
Michael Kirka ◽  
Pauk Brackman ◽  
Ryan Dehoff ◽  
...  

Author(s):  
Andreas Apostolatos ◽  
Altuğ Emiroğlu ◽  
Shahrokh Shayegan ◽  
Fabien Péan ◽  
Kai-Uwe Bletzinger ◽  
...  

AbstractIn this study the isogeometric B-Rep mortar-based mapping method for geometry models stemming directly from Computer-Aided Design (CAD) is systematically augmented and applied to partitioned Fluid-Structure Interaction (FSI) simulations. Thus, the newly proposed methodology is applied to geometries described by their Boundary Representation (B-Rep) in terms of trimmed multipatch Non-Uniform Rational B-Spline (NURBS) discretizations as standard in modern CAD. The proposed isogeometric B-Rep mortar-based mapping method is herein extended for the transformation of fields between a B-Rep model and a low order discrete surface representation of the geometry which typically results when the Finite Volume Method (FVM) or the Finite Element Method (FEM) are employed. This enables the transformation of such fields as tractions and displacements along the FSI interface when Isogeometric B-Rep Analysis (IBRA) is used for the structural discretization and the FVM is used for the fluid discretization. The latter allows for diverse discretization schemes between the structural and the fluid Boundary Value Problem (BVP), taking into consideration the special properties of each BVP separately while the constraints along the FSI interface are satisfied in an iterative manner within partitioned FSI. The proposed methodology can be exploited in FSI problems with an IBRA structural discretization or to FSI problems with a standard FEM structural discretization in the frame of the Exact Coupling Layer (ECL) where the interface fields are smoothed using the underlying B-Rep parametrization, thus taking advantage of the smoothness that the NURBS basis functions offer. All new developments are systematically investigated and demonstrated by FSI problems with lightweight structures whereby the underlying geometric parametrizations are directly taken from real-world CAD models, thus extending IBRA into coupled problems of the FSI type.


2021 ◽  
Vol 11 (4) ◽  
pp. 145
Author(s):  
Nenad Bojcetic ◽  
Filip Valjak ◽  
Dragan Zezelj ◽  
Tomislav Martinec

The article describes an attempt to address the automatized evaluation of student three-dimensional (3D) computer-aided design (CAD) models. The driving idea was conceptualized under the restraints of the COVID pandemic, driven by the problem of evaluating a large number of student 3D CAD models. The described computer solution can be implemented using any CAD computer application that supports customization. Test cases showed that the proposed solution was valid and could be used to evaluate many students’ 3D CAD models. The computer solution can also be used to help students to better understand how to create a 3D CAD model, thereby complying with the requirements of particular teachers.


Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 1986
Author(s):  
Andreas Koenig ◽  
Julius Schmidtke ◽  
Leonie Schmohl ◽  
Sibylle Schneider-Feyrer ◽  
Martin Rosentritt ◽  
...  

The performance of dental resin-based composites (RBCs) heavily depends on the characteristic properties of the individual filler fraction. As specific information regarding the properties of the filler fraction is often missing, the current study aims to characterize the filler fractions of several contemporary computer-aided design/computer-aided manufacturing (CAD/CAM) RBCs from a material science point of view. The filler fractions of seven commercially available CAD/CAM RBCs featuring different translucency variants were analysed using Scanning Electron Microscopy (SEM) with Energy Dispersive X-ray Spectroscopy (EDS), Micro-X-ray Computed Tomography (µXCT), Thermogravimetric Analysis (TG) and X-ray Diffractometry (XRD). All CAD/CAM RBCs investigated included midifill hybrid type filler fractions, and the size of the individual particles was clearly larger than the individual specifications of the manufacturer. The fillers in Shofu Block HC featured a sphericity of ≈0.8, while it was <0.7 in all other RBCs. All RBCs featured only X-ray amorphous phases. However, in Lava Ultimate, zircon crystals with low crystallinity were detected. In some CAD/CAM RBCs, inhomogeneities (X-ray opaque fillers or pores) with a size <80 µm were identified, but the effects were minor in relation to the total volume (<0.01 vol.%). The characteristic parameters of the filler fraction in RBCs are essential for the interpretation of the individual material’s mechanical and optical properties.


2015 ◽  
Vol 645-646 ◽  
pp. 70-74 ◽  
Author(s):  
Min Zhong ◽  
Yu Hang Zhao ◽  
Shou Mian Chen ◽  
Ming Li ◽  
Shao Hai Zeng ◽  
...  

An embedded SiGe layer was applied in the source/drain areas (S/D) of a field-effect transistor to boost the performance in the p channels. Raised SiGe S/D plays a critical role in strain engineering. In this study, the relationship between the SiGe overfilling and the enhancement of channel stress was investigated. Systematic technology computer aided design (TCAD) simulations of the SiGe overfill height in a 40 nm PMOS were performed. The simulation results indicate that a moderate SiGe overfilling induces the highest stress in the channel. Corresponding epitaxial growth experiments were done and the obtained experimental data was in good agreement with the simulation results. The effect of the SiGe overfilling is briefly discussed. The results and conclusions presented within this paper might serve as useful references for the optimization of the embedded SiGe stressor for 40 nm logic technology node and beyond.


2018 ◽  
Vol Vol.18 (No.1) ◽  
pp. 96-107 ◽  
Author(s):  
Lam NGUYEN ◽  
Johannes BUHL ◽  
Markus BAMBACH

Three-axis machines are limited in the production of geometrical features in powder-bed additive manufacturing processes. In case of overhangs, support material has to be added due to the nature of the process, which causes some disadvantages. Robot-based wire-arc additive manufacturing (WAAM) is able to fabricate overhangs without adding support material. Hence, build time, waste of material, and post-processing might be reduced considerably. In order to make full use of multi-axis advantages, slicing strategies are needed. To this end, the CAD (computer-aided design) model of the part to be built is first partitioned into sub-parts, and for each sub-part, an individual build direction is identified. Path planning for these sub-parts by slicing then enables to produce the parts. This study presents a heuristic method to deal with the decomposition of CAD models and build direction identification for sub-entities. The geometric data of two adjacent slices are analyzed to construct centroidal axes. These centroidal axes are used to navigate the slicing and building processes. A case study and experiments are presented to exemplify the algorithm.


2016 ◽  
Vol 8 (3) ◽  
Author(s):  
Hailin Huang ◽  
Bing Li ◽  
Jianyang Zhu ◽  
Xiaozhi Qi

This paper proposes a new family of single degree of freedom (DOF) deployable mechanisms derived from the threefold-symmetric deployable Bricard mechanism. The mobility and geometry of original threefold-symmetric deployable Bricard mechanism is first described, from the mobility characterstic of this mechanism, we show that three alternate revolute joints can be replaced by a class of single DOF deployable mechanisms without changing the single mobility characteristic of the resultant mechanisms, therefore leading to a new family of Bricard-derived deployable mechanisms. The computer-aided design (CAD) models are used to demonstrate these derived novel mechanisms. All these mechanisms can be used as the basic modules for constructing large volume deployable mechanisms.


Author(s):  
Alexandra Roberts ◽  
John True ◽  
Nathan T. Jessurun ◽  
Dr. Navid Asadizanjani

Abstract Printed Circuit Boards (PCBs) play a critical role in everyday electronic systems, therefore the quality and assurance of the functionality for these systems is a topic of great interest to the government and industry. PCB manufacturing has been largely outsourced to cut manufacturing costs in comparison with the designing and testing of PCBs which still retains a large presence domestically. This offshoring of manufacturing has created a surge in the supply chain vulnerability for potential adversaries to garner access and attack a device via a malicious modification. Current hardware assurance and verification methods are based on electrical and optical tests. These tests are limited in the detection of malicious hardware modifications, otherwise known as Hardware Trojans. For PCB manufacturing there has been an increase in the use of automated X-ray inspection. These inspections can validate a PCB’s functionality during production. Such inspections mitigate process errors in real time but are unable to perform highresolution characterization on multi-layer fully assembled PCBs. In this paper, several X-ray reconstruction methods, ranging from proprietary to open-source, are compared. The high-fidelity, commercial NRecon software for SkyScan 2211 Multi-scale X-ray micro-Tomography system is compared to various methods from the ASTRA Toolbox. The latter is an open-source, transparent approach to reconstruction via analytical and iterative methods. The toolbox is based on C++ and MEX file functions with MATLAB and Python wrappers for analysis of PCB samples. In addition, the differences in required imaging parameters and the resultant artifacts generated by planar PCBs are compared to the imaging of cylindrical biological samples. Finally, recommendations are made for improving the ASTRA Toolbox reconstruction results and guidance is given on the appropriate scenarios for each algorithm in the context of hardware assurance for PCBs.


2020 ◽  
Vol 7 (5) ◽  
pp. 603-614 ◽  
Author(s):  
Mutahar Safdar ◽  
Tahir Abbas Jauhar ◽  
Youngki Kim ◽  
Hanra Lee ◽  
Chiho Noh ◽  
...  

Abstract Feature-based translation of computer-aided design (CAD) models allows designers to preserve the modeling history as a series of modeling operations. Modeling operations or features contain information that is required to modify CAD models to create different variants. Conventional formats, including the standard for the exchange of product model data or the initial graphics exchange specification, cannot preserve design intent and only geometric models can be exchanged. As a result, it is not possible to modify these models after their exchange. Macro-parametric approach (MPA) is a method for exchanging feature-based CAD models among heterogeneous CAD systems. TransCAD, a CAD system for inter-CAD translation, is based on this approach. Translators based on MPA were implemented and tested for exchange between two commercial CAD systems. The issues found during the test rallies are reported and analyzed in this work. MPA can be further extended to remaining features and constraints for exchange between commercial CAD systems.


2003 ◽  
Vol 3 (4) ◽  
pp. 302-307 ◽  
Author(s):  
Tamal K. Dey ◽  
Samrat Goswami

Surface reconstruction from unorganized sample points is an important problem in computer graphics, computer aided design, medical imaging and solid modeling. Recently a few algorithms have been developed that have theoretical guarantee of computing a topologically correct and geometrically close surface under certain condition on sampling density. Unfortunately, this sampling condition is not always met in practice due to noise, non-smoothness or simply due to inadequate sampling. This leads to undesired holes and other artifacts in the output surface. Certain CAD applications such as creating a prototype from a model boundary require a water-tight surface, i.e., no hole should be allowed in the surface. In this paper we describe a simple algorithm called Tight Cocone that works on an initial mesh generated by a popular surface reconstruction algorithm and fills up all holes to output a water-tight surface. In doing so, it does not introduce any extra points and produces a triangulated surface interpolating the input sample points. In support of our method we present experimental results with a number of difficult data sets.


Sign in / Sign up

Export Citation Format

Share Document