Managing of a Strategic Crude Oil Pipeline for Maximum Transportation Capacity

Author(s):  
Hesham A. M. Abdou

The aged crude oil pipeline; 16″ × 166 km since November 1984, extends from Meleiha field at western desert to El-Hamra terminal at coast of the Mediterranean sea. Its original capacity was 100,000 BOPD using two pumping stations; one at Meleiha and the other is a boosting station, 83 km far from Meleiha. Planned pumped flow rate increased to 177,000 BOPD at the time that Maximum Allowable Working Pressure (MAWP) reduced from 1440 psi to 950 psi. This paper shows managing procedures led to pumping higher flow rate without exceeding MAWP, where two solutions to accommodate such increase in production were applied; firstly by looping the existing pipeline with a (16″ × 56 km), secondly by using a Drag Reducing Agent (DRA), so that could reduce hydraulic friction losses and Total Dynamic Pressure (TDP) in the system and could pumped more with reduced initial pumping pressure at Meleiha. So, the intermediate station was temporarily abandoned. Mathematical models are designed to simulate pumping operation through the whole system, where TDP is predicted for the three pipeline cases: 1- normal case without both looping & DRA. 2- case without DRA & with looping. 3- case with both looping & DRA. Laws of hydraulics are applied with the deduced formula represents performance of DRA in which percentage of drop in pressure losses is modeled as a function of DRA dose in ppm. Close agreement is remarked between values of the deduced theoretical values and actual values obtained for TDP, confirming validity of such mathematical models.

Author(s):  
Yuanyuan Chen ◽  
Jing Gong ◽  
Xiaoping Li ◽  
Nan Zhang ◽  
Shaojun He ◽  
...  

Pipeline commissioning, which is a key link from engineering construction to production operation, is aim to fill an empty pipe by injecting water or oil to push air out of it. For a large-slope crude oil pipeline with great elevation differences, air is fairly easy to entrap at downward inclined parts. The entrapped air, which is also called air pocket, will cause considerable damage on pumps and pipes. The presence of it may also bring difficulties in tracking the location of the liquid head or the interface between oil and water. It is the accumulated air that needed to be exhausted in time during commissioning. This paper focuses on the simulation of liquid-gas replacement in commissioning process that only liquid flow rate exists while gas stays stagnant in the pipe and is demanded to be replaced by liquid. Few previous researches have been found yet in this area. Consequently, the flow in a V-section pipeline consisted of a downhill segment and a subsequent uphill one is used here for studying both the formation and exhaustion behaviors of the intake air. The existing two-fluid model and simplified non-pressure wave model for gas-liquid stratified flow are applied to performance the gas formation and accumulation. The exhausting process is deemed to be a period in which the elongated bubble (Taylor bubble) is fragmented into dispersed small bubbles. A mathematical model to account for gas entrainment into liquid slug is proposed, implemented and incorporated in a computational procedure. By taking into account the comprehensive effects of liquid flow rate, fluid properties, surface tension, and inclination angle, the characteristics of the air section such as the length, pressure and mass can be calculated accurately. The model was found to show satisfactory predictions when tested in a pipeline. The simulation studies can provide theoretical support and guidance for field engineering application, which are meanwhile capable of helping detect changes in parameters of gas section. Thus corresponding control measures can be adopted timely and appropriately in commissioning process.


Author(s):  
Alexander Y. Lyapin ◽  
◽  
Vladimir O. Nekuchaev ◽  
Sergei K. Ovchinnikov ◽  
Mikhail M. Mikheev ◽  
...  

The purpose of the research is to find out the reasons for the decrease in the effectiveness of the depressor additive DPN-1 as oil flows through the pipeline. The objects of the research are a mixture of paraffinic oils entering the Usa – Ukhta oil pipeline, either treated or untreated with DPN-1, as well as its mixture with highly-refined oil pumped from the Chikshino crude oil delivery and acceptance point. To achieve this goal, the rheological properties of oil were monitored at the main US oil pumping station, Chikshino and Ukhta-1 oil pumping stations; laboratory studies on the rheological properties attributed to simulated mixtures, compiled taking into account the volumes of oil delivered by various oil producers; and monitoring of the rheological properties of point samples of oils as they flow through the pipeline. The serial experiments resulted in establishing that the key factor in reduced efficiency of the DPN-1 additive used in the paraffinic oil mixture is the high pour point oil pumped from the Chikshino crude oil delivery and acceptance point (the share of which is 10 % of the total pumping volume).


2021 ◽  
Vol 17 (1) ◽  
pp. 44-49 ◽  
Author(s):  
Ibrahim Elganidi ◽  
Basem Elarbe ◽  
Norida Ridzuan ◽  
Norhayati Abdullah

The deposition of wax is a common occurrence affecting the flowability of crude oil, which happens at a temperature beneath the Wax Appearance Temperature. At this threshold, there is a gradual accumulation of crystals wax on the inner surface of pipelines. In this research, the previous studies on the effects of residence time, pressure, flow rate, crude oil composition, and temperature differential were carefully enumerated. On the overall, the differential temperature across the pipeline wall and crude oil inside it were considered as the most critical factor contributing to wax deposition. The result from different studies had argued out the effect of significant temperature differential as a leading cause of wax deposition reduction. Also, there is conflict among many researchers on whether the flow rate could result in a reduction in the amount and thickness of deposited wax. However, the wax deposition increases with an increasing resident time up to a particular time, after which the wax deposition experiences a downward trend. On the contrary, most researchers indicated that pressure is not a significant factor of wax deposition, but the conclusion that obtained through this research shows the opposite. Despite these, additional works are required in acquiring substantial results for more accurate as compared with the real-life crude oil flow in the pipeline.


Author(s):  
Gordon E. Gin ◽  
John Davis

Gibson Energy performed a liquid pipeline spill analysis on the approximately 1 kilometre long 168.3 mm Crude Oil pipeline near the Edmonton South Terminal. This pipeline crosses a sensitive tributary that drains into the North Saskatchewan River. The pipeline is currently not in operation, however is locked in with product. This spill analysis is unique in that the pipeline is under minimal pressure with no appreciable flow rate. As a result, the objective of this analysis was to illustrate the length of time required to perform drain down at various locations along the pipeline. The Spill Analysis consisted of modeling a potential liquid release scenario for overland flow modeling of a liquid release and reports both direct and indirect High Consequence Area (HCA) impacts. Additionally, data showing spill plume extents, final volumes and other GIS data was generated for map generation. This presentation will discuss the methods, data, parameters, and results of this analysis and the next steps in providing regulators sufficient information for a comprehensive contingency plan of the Edmonton terminal.


1988 ◽  
Vol 53 (4) ◽  
pp. 788-806
Author(s):  
Miloslav Hošťálek ◽  
Jiří Výborný ◽  
František Madron

Steady state hydraulic calculation has been described of an extensive pipeline network based on a new graph algorithm for setting up and decomposition of balance equations of the model. The parameters of the model are characteristics of individual sections of the network (pumps, pipes, and heat exchangers with armatures). In case of sections with controlled flow rate (variable characteristic), or sections with measured flow rate, the flow rates are direct inputs. The interactions of the network with the surroundings are accounted for by appropriate sources and sinks of individual nodes. The result of the calculation is the knowledge of all flow rates and pressure losses in the network. Automatic generation of the model equations utilizes an efficient (vector) fixing of the network topology and predominantly logical, not numerical operations based on the graph theory. The calculation proper utilizes a modification of the model by the method of linearization of characteristics, while the properties of the modified set of equations permit further decrease of the requirements on the computer. The described approach is suitable for the solution of practical problems even on lower category personal computers. The calculations are illustrated on an example of a simple network with uncontrolled and controlled flow rates of cooling water while one of the sections of the network is also a gravitational return flow of the cooling water.


2021 ◽  
Vol 18 (1) ◽  
pp. 145-162
Author(s):  
B Butchibabu ◽  
Prosanta Kumar Khan ◽  
P C Jha

Abstract This study aims for the protection of a crude-oil pipeline, buried at a shallow depth, against a probable environmental hazard and pilferage. Both surface and borehole geophysical techniques such as electrical resistivity tomography (ERT), ground penetrating radar (GPR), surface seismic refraction tomography (SRT), cross-hole seismic tomography (CST) and cross-hole seismic profiling (CSP) were used to map the vulnerable zones. Data were acquired using ERT, GPR and SRT along the pipeline for a length of 750 m, and across the pipeline for a length of 4096 m (over 16 profiles of ERT and SRT with a separation of 50 m) for high-resolution imaging of the near-surface features. Borehole techniques, based on six CSP and three CST, were carried out at potentially vulnerable locations up to a depth of 30 m to complement the surface mapping with high-resolution imaging of deeper features. The ERT results revealed the presence of voids or cavities below the pipeline. A major weak zone was identified at the central part of the study area extending significantly deep into the subsurface. CSP and CST results also confirmed the presence of weak zones below the pipeline. The integrated geophysical investigations helped to detect the old workings and a deformation zone in the overburden. These features near the pipeline produced instability leading to deformation in the overburden, and led to subsidence in close vicinity of the concerned area. The area for imminent subsidence, proposed based on the results of the present comprehensive geophysical investigations, was found critical for the pipeline.


2021 ◽  
Vol 1927 (1) ◽  
pp. 012021
Author(s):  
Junjiang Liu ◽  
Liang Feng ◽  
Dake Yang ◽  
Xianghui Li

2021 ◽  
Vol 205 ◽  
pp. 108881
Author(s):  
Xuedong Gao ◽  
Qiyu Huang ◽  
Xun Zhang ◽  
Yu Zhang ◽  
Xiangrui Zhu ◽  
...  

Energies ◽  
2019 ◽  
Vol 12 (22) ◽  
pp. 4325
Author(s):  
Zhihua Wang ◽  
Yunfei Xu ◽  
Yi Zhao ◽  
Zhimin Li ◽  
Yang Liu ◽  
...  

Wax deposition during crude oil transmission can cause a series of negative effects and lead to problems associated with pipeline safety. A considerable number of previous works have investigated the wax deposition mechanism, inhibition technology, and remediation methods. However, studies on the shearing mechanism of wax deposition have focused largely on the characterization of this phenomena. The role of the shearing mechanism on wax deposition has not been completely clarified. This mechanism can be divided into the shearing dispersion effect caused by radial migration of wax particles and the shearing stripping effect caused by hydrodynamic scouring. From the perspective of energy analysis, a novel wax deposition model was proposed that considered the flow parameters of waxy crude oil in pipelines instead of its rheological parameters. Considering the two effects of shearing dispersion and shearing stripping coexist, with either one of them being the dominant mechanism, a shearing dispersion flux model and a shearing stripping model were established. Furthermore, a quantitative method to distinguish between the roles of shearing dispersion and shearing stripping in wax deposition was developed. The results indicated that the shearing mechanism can contribute an average of approximately 10% and a maximum of nearly 30% to the wax deposition process. With an increase in the oil flow rate, the effect of the shearing mechanism on wax deposition is enhanced, and its contribution was demonstrated to be negative; shear stripping was observed to be the dominant mechanism. A critical flow rate was observed when the dominant effect changes. When the oil flow rate is lower than the critical flow rate, the shearing dispersion effect is the dominant effect; its contribution rate increases with an increase in the oil flow temperature. When the oil flow rate is higher than the critical flow rate, the shearing stripping effect is the dominant effect; its contribution rate increases with an increase in the oil flow temperature. This understanding can be used to design operational parameters of the actual crude oil pipelines and address the potential flow assurance problems. The results of this study are of great significance for understanding the wax deposition theory of crude oil and accelerating the development of petroleum industry pipelines.


Sign in / Sign up

Export Citation Format

Share Document