Passive Immersion Cooling of 3-D Stacked Dies

Author(s):  
Karl J. L. Geisler ◽  
Avram Bar-Cohen

Three-dimensional die stacking increases integrated circuit (IC) density, providing increased capabilities and improved electrical performance on a smaller printed circuit board (PCB) footprint area. However, these advantages come at the expense of higher volumetric heat generation rates and decreased thermal and mechanical access to the die areas. Passive immersion cooling, allowing for buoyancy-driven fluid flow between stacked dies, can provide high heat transfer coefficients directly on the die surfaces, can easily accommodate a wide variety of interconnect schemes, and is scalable to any number of dies. A methodology for the optimization of immersion cooled 3-D stacked dies is presented, including the effects of confinement on natural convection and channel boiling. Optimum die spacings for both single and two phase cooling with saturated FC-72 are found to be on the order of 0.5mm for typical microelectronics geometries and to yield heat densities of 10–50 W/cm3 in natural convection and 100–500 W/cm3 in channel boiling.

Author(s):  
Jessica Sheehan ◽  
Avram Bar-Cohen

Heat transfer to an evaporating refrigerant and/or dielectric liquid in a microgap channel can provide very high heat transfer coefficients and volumetric cooling rates. Recent studies at Maryland have established the dominance of the annular flow regime in such microgap channels and related the observed high-quality peak of an M-shaped heat transfer coefficient curve to the onset of local dryout. The present study utilizes infrared thermography to locate such nascent dryout regions and operating conditions. Data obtained with a 210 micron microgap channel, operated with a mass flux of 195.2 kg/m2-s and heat fluxes of 10.3 to 26 W/cm2 are presented and discussed.


Author(s):  
Edvin Cetegen ◽  
Thomas Baummer ◽  
Serguei Dessiatoun ◽  
Michael Ohadi

This paper investigates the heat transfer and pressure drop analysis of micro grooved surfaces utilized in evaporators and condensers of a two-phase flow cooling loop. These devices utilize the vapor-liquid phase change to transfer large amounts of heat, and they offer substantially higher heat flux performance with lower pumping power than most liquid cooling technologies. Microgrooved surfaces, combined with force-fed evaporation and condensation technology discussed in this paper yield high heat transfer coefficients with low pressure drops. Our most recent results, aiming to test the limits of the technology, demonstrated dissipation of almost 1kW/cm2 from silicon electronics using HFE 7100 as the working fluid. In a compact two phase system, the heat generated by the electronic components can be absorbed by microgrooved evaporators and rejected through the microgrooved surface condensers to liquid cooled slots with high heat transfer coefficients and low pressure drops on the refrigerant side. In the case of air-cooling, the same microgrooved surface heat exchanger can reject heat with a heat transfer coefficient of 3847 W/cm2 and a pressure drop of 4156 Pa. These heat transfer processes have the added capability of being combined and used together in a self-contained system cooled either by liquid or air.


Author(s):  
Dhruv C. Hoysall ◽  
Khoudor Keniar ◽  
Srinivas Garimella

Multiphase flow phenomena in single micro- and minichannels have been widely studied. Microchannel heat exchangers offer the potential for high heat transfer coefficients; however, implementation challenges must be addressed to realize this potential. Maldistribution of phases among the microchannels in the array and the changing phase velocities associated phase change present design challenges. Flow maldistribution and oscillatory instabilities can severely affect heat and mass transfer rates as well as pressure drops. In components such as condensers, evaporators, absorbers and desorbers, changing phase velocities can change prevailing flow regimes from favorable to unfavorable. Geometries with serpentine passages containing pin fins can be configured to maintain favorable flow regimes throughout the length of the component for diabatic phase-change heat and mass transfer applications. Due to the possibility of continuous redistribution of the flow across the pin fins along the flow direction, maldistribution can also be reduced. These features enable the potential of high heat transfer coefficients in microscale passages to be fully realized, thereby reducing the required transfer area, and achieving considerable compactness. The characteristics of two-phase flow through a serpentine passage with micro-pin fin arrays with diameters 350 μm and height 406 μm are investigated here. An air-water mixture is used to represent two-phase flow through the serpentine test section, and a variety of flow features are visually investigated using high-speed photography. Improved flow distribution is observed in the serpentine geometry. Distinct flow regimes, different from those observed in microchannels are also established. These observations are used to obtain void fraction and interfacial area along the length of the serpentine passages and compared with the corresponding values for straight microchannels. Models for the two-phase frictional pressure drops across this geometry are also developed.


2017 ◽  
Vol 140 (1) ◽  
Author(s):  
Dhruv C. Hoysall ◽  
Khoudor Keniar ◽  
Srinivas Garimella

Microchannel heat exchangers offer the potential for high heat transfer coefficients; however, implementation challenges must be addressed to realize this potential. Maldistribution of phases among the microchannels and the changing phase velocities associated with phase change present design challenges. Flow maldistribution and oscillatory instabilities can affect transfer rates and pressure drops. In condensers, evaporators, absorbers, and desorbers, changing phase velocities can change prevailing flow regimes from favorable to unfavorable. Geometries with serpentine passages containing pin fins can be configured to maintain favorable flow regimes throughout the component for phase-change heat and mass transfer applications. Due to the possibility of continuous redistribution of the flow across the pin fins along the flow direction, maldistribution can also be reduced. These features enable high heat transfer coefficients, thereby achieving considerable compactness. The characteristics of two-phase flow through a serpentine passage with micro-pin fin arrays with diameter 350 μm and height 406 μm are investigated. An air–water mixture is used to represent two-phase flow through the serpentine test section, and flow features are investigated using high-speed photography. Improved flow distribution is observed in the serpentine geometry. Distinct flow regimes, different from those observed in microchannels, are also established. Void fraction and interfacial area along the length of the serpentine passages are compared with the corresponding values for microchannels. A model developed for the two-phase frictional pressure drops across this serpentine micro-pin fin geometry predicts experimental values with a mean absolute error (MAE) of 7.16%.


2018 ◽  
Vol 240 ◽  
pp. 03010
Author(s):  
Tomasz Muszynski ◽  
Rafal Andrzejczyk ◽  
Carlos Dorao

A crucial step to assure proficient work of power and process apparatus is their proper design. A wide array of those devices operates within boiling or condensation of the working fluid to benefit from high heat transfer rates. Two-phase flows are associated with high heat transfer coefficients because of the latent heat of evaporation and high turbulence level between the liquid and the solid surface. Predicting heat transfer coefficient and pressure drop is a challenging task, and has been pursued by researchers for decades. In the case of diabatic flows, the total pressure drop is due to the change in kinetic and potential energy. The article presents detailed boiling pressure drops data for R134a at a saturation temperature of 19.4°C. Study cases have been set for a mass flux varying from 300 to 500 kg/m2s. Presented data along with the data reduction procedure was used to obtain the momentum pressure drop values during flow boiling. The study focuses on experimental values of momentum pressure drop component and its prediction based on various void fraction models and entrainment effects.


Author(s):  
William Ng ◽  
Kevin Weaver ◽  
Zachary Gemmill ◽  
Herve Deslandes ◽  
Rudolf Schlangen

Abstract This paper demonstrates the use of a real time lock-in thermography (LIT) system to non-destructively characterize thermal events prior to the failing of an integrated circuit (IC) device. A case study using a packaged IC mounted on printed circuit board (PCB) is presented. The result validated the failing model by observing the thermal signature on the package. Subsequent analysis from the backside of the IC identified a hot spot in internal circuitry sensitive to varying value of external discrete component (inductor) on PCB.


Author(s):  
Norman J. Armendariz ◽  
Carolyn McCormick

Abstract Via in pad PCB (Printed Circuit board) technology for passive components such as chip capacitors and resistors, provides the potential for improved signal routing density and reduced PCB area. Because of these improvements there is the potential for PCB cost reduction as well as gains in electrical performance through reduced impedance and inductance. However, not long after the implementation, double digit unit failures for solder joint electrical opens due to capacitor “tombstoning” began to occur. Failure modes included via fill material (solder mask) protrusion from the via as well as “out gassing” and related “tombstoning.” This failure analysis involved investigating a strong dependence on PCB supplier and, less obviously, manufacturing site. Other factors evaluated included via fill material, drill size, via fill thermal history and via fill amount or fill percent. The factor most implicated was incomplete cure of the via fill material. Previous thermal gravimetric analysis methods to determine level of polymerization or cure did not provide an ability to measure and demonstrate via fill cure level in small selected areas or its link to the failures. As a result, there was a metrology approach developed to establish this link and root-cause the failures in the field, which was based on microhardness techniques and noncontact via fill measuring metrologies.


2012 ◽  
Vol 2012 (1) ◽  
pp. 000581-000590
Author(s):  
Roy W. Knight ◽  
Seth Fincher ◽  
Sushil H. Bhavnani ◽  
Daniel K. Harris ◽  
R. Wayne Johnson

Immersion, single phase free convection cooling of multichip modules on a printed circuit board in a pool of dielectric fluid was examined numerically, with experimental verification of baseline cases. A multi-chip module with multiple thermal test cells with temperature sensing capability was simulated. The commercially available computational fluid dynamics program from ANSYS, Fluent, was used with the electronics packaging front end, Icepak, employed to create the models and compact conduction modules. Simulations were first performed of an experimental test vehicle which had five 18 mm by 18 mm die, arranged in a cross pattern, equally spaced die, 25 mm between them. Two of the die were aligned vertically with the center die, two aligned horizontally with it. The board was suspended vertically in a large pool of dielectric fluid. Heat was dissipated in the die at a flux of up to 2 W/cm2, based on the die surface area. Simulation results were compared with experimentally measured die temperature values and excellent agreement was seen for the cases of one die heated and all five die uniformly heated with the board cooled by FC-72. A numerical parametric study was performed to examine the effect of die size and spacing on temperature rise. In addition to FC-72, immersion cooling in Novec 649 and HFE 7100 were modeled. Design guidelines are suggested for dielectric fluid immersion cooled multichip modules.


Circuit World ◽  
2020 ◽  
Vol 46 (3) ◽  
pp. 215-219
Author(s):  
Akhendra Kumar Padavala ◽  
Narayana Kiran Akondi ◽  
Bheema Rao Nistala

Purpose This paper aims to present an efficient method to improve quality factor of printed fractal inductors based on electromagnetic band-gap (EBG) surface. Design/methodology/approach Hilbert fractal inductor is designed and simulated using high-frequency structural simulator. To improve the quality factor, an EBG surface underneath the inductor is incorporated without any degradation in inductance value. Findings The proposed inductor and Q factor are measured based on well-known three-dimensional simulator, and the results are compared experimentally. Practical implications The proposed method was able to significantly decrease the noise with increase in the speed of radio frequency and sensor-integrated circuit design. Originality/value Fractal inductor is designed and simulated with and without EBG surfaces. The measurement of printed circuit board prototypes demonstrates that the inclusion of split-ring array as EBG surface increases the quality factor by 90 per cent over standard fractal inductor of the same dimensions with a small degradation in inductance value and is capable of operating up to 2.4 GHz frequency range.


Sign in / Sign up

Export Citation Format

Share Document