Superhigh Pressure Dense Phase Arctic Pipelines Increase Reliability and Reduce Costs

Author(s):  
Graeme King ◽  
Chris Kedge ◽  
Xuelong Zhou ◽  
Andrzej Matuszkiewicz

Differential movement in permafrost terrain due to ground freezing or thawing challenges the reliability of buried pipelines proposed for transporting natural gas from Prudhoe Bay and the Mackenzie Delta. Arctic pipelines designed to operate at conventional pressures (that is, below 10 MPa) are susceptible to wrinkling, bulging, and ovalling due to the differential movements they cause at interfaces between frozen and unfrozen ground and between different types of soil. Arctic pipelines designed to operate at superhigh pressures—defined here as pressures above 25 MPa—can accommodate the differential movements. A fair comparison between large diameter artic pipelines with operating pressures in the range from 10 to 42 MPa was made by accurately simulating flow performance with Greenpipe’s PipeCraft™ software. For any given design flow, superhigh pressure dense phase pipelines have smaller diameters and thicker walls, making them more flexible and better able to handle differential movements. And at superhigh pressures, Joule-Thomson cooling is negligible so that flowing gas stays close to ground temperature, reducing potential for frost heave or thaw settlement in the first place. Although weight per meter of superhigh pressure pipelines is similar to conventional pressure pipelines of similar flow capacity, increased flexibility means they are easier to lift and handle during construction. They also conform more easily to the terrain, resulting in less excavation and less pipe bending to make them fit the contours of the trench. The net result is reduced construction costs. When construction, maintenance and reliability are factored into the selection process, superhigh pressure dense phase pipelines provide a cost effective option for handling the challenges of arctic environments.

Author(s):  
Thorben Moos ◽  
Amir Moradi

In recent years it has been demonstrated convincingly that the standby power of a CMOS chip reveals information about the internally stored and processed data. Thus, for adversaries who seek to extract secrets from cryptographic devices via side-channel analysis, the static power has become an attractive quantity to obtain. Most works have focused on the destructive side of this subject by demonstrating attacks. In this work, we examine potential solutions to protect circuits from silently leaking sensitive information during idle times. We focus on countermeasures that can be implemented using any common digital standard cell library and do not consider solutions that require full-custom or analog design flow. In particular, we evaluate and compare a set of five distinct standard-cell-based hiding countermeasures, including both, randomization and equalization techniques. We then combine the hiding countermeasures with state-of-the-art hardware masking in order to amplify the noise level and achieve a high resistance against attacks. An important part of our contribution is the proposal and evaluation of the first ever standard-cell-based balancing scheme which achieves perfect data-independence on paper, i.e., in absence of intra-die process variations and aging effects. We call our new countermeasure Exhaustive Logic Balancing (ELB). While this scheme, applied to a threshold implementation, provides the highest level of resistance in our experiments, it may not be the most cost effective option due to the significant resource overhead associated. All evaluated countermeasures and combinations thereof are applied to a serialized hardware implementation of the PRESENT block cipher and realized as cryptographic co-processors on a 28nm CMOS ASIC prototype. Our experimental results are obtained through real-silicon measurements of a fabricated die of the ASIC in a temperature-controlled environment using a source measure unit (SMU). We believe that our elaborate comparison serves as a useful guideline for hardware designers to find a proper tradeoff between security and cost for almost any application.


Coatings ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 126 ◽  
Author(s):  
Paola Di Mascio ◽  
Giuseppe Loprencipe ◽  
Laura Moretti

A port is an intermodal system in which many logistics activities requiring properly constructed areas occur. The large extension of these areas poses a major problem in choosing materials with technical and economic implications. Choice and design of pavements are directly related to the port handling systems and procedures for the disposal of the cargo units. The paper presents the design and verification procedures for three equivalent pavements for a handling pavement in an Italian medium-sized port trafficked by reach stackers moving containers. An asphalt pavement, a concrete pavement, and a concrete block pavement have been considered during the 20-year service life. Empirical and analytical methods have been adopted to design and verify the pavements. The structures have been examined in terms of economic concerns during the overall service life, considering both construction and maintenance costs, in order to determine the most cost-effective option. The results demonstrate the inappropriateness of asphalt pavement, in the examined case, from a construction costs point of view. Furthermore, the overall discounted costs show an inversion of convenience between block concrete pavement and cast in situ concrete: the latter is the cheaper solution. The proposed methodology can balance often conflicting objectives in matters of durability and funds management, providing answers to a complex topic.


2009 ◽  
Vol 4 (3) ◽  
Author(s):  
I. Venner ◽  
J. Husband ◽  
J. Noonan ◽  
A. Nelson ◽  
D. Waltrip

In response to rapid population growth as well as to address the nutrient reduction goals for the Chesapeake Bay established by the Virginia Department of Environmental Quality (VDEQ), the Hampton Roads Sanitation District (HRSD) initiated the York River Treatment Plant (YRTP) Expansion Phase 1 project. The existing YRTP is a conventional step-feed activated sludge plant and is rated for an average daily design flow of 57 million liters per day (MLD). This project proposes to expand the existing treatment capacity to 114 MLD and to reduce the nutrients discharged to the York River, a tributary for the Chesapeake Bay. In order to meet the effluent limits set by the VDEQ, a treatment upgrade to limit of technology (LOT) or enhanced nutrient removal (ENR) was required. Malcolm Pirnie worked with HRSD and the VDEQ to develop and evaluate ENR process alternatives to achieve the required effluent limits with the goal of determining the most reliable and cost effective alternative to achieve the aggressive nutrient reduction goals. This paper will highlight the key issues in determining the most desirable treatment process considering both economic and non-economic factors.


2021 ◽  
Vol 9 (6) ◽  
pp. 596
Author(s):  
Murugan Ramasamy ◽  
Mohammed Abdul Hannan ◽  
Yaseen Adnan Ahmed ◽  
Arun Kr Dev

Offshore vessels (OVs) often require precise station-keeping and some vessels, for example, vessels involved in geotechnical drilling, generally use Spread Mooring (SM) or Dynamic Positioning (DP) systems. Most of these vessels are equipped with both systems to cover all ranges of water depths. However, determining which system to use for a particular operational scenario depends on many factors and requires significant balancing in terms of cost-benefit. Therefore, this research aims to develop a platform that will determine the cost factors for both the SM and DP station-keeping systems. Operational information and cost data are collected for several field operations, and Artificial Neural Networks (ANN) are trained using those data samples. After that, the trained ANN is used to predict the components of cost for any given environmental situation, fieldwork duration and water depth. Later, the total cost is investigated against water depth for both DP and SM systems to determine the most cost-effective option. The results are validated using two operational scenarios for a specific geotechnical vessel. This decision-making algorithm can be further developed by adding up more operational data for various vessels and can be applied in the development of sustainable decision-making business models for OVs operators.


2014 ◽  
Vol 136 (2) ◽  
Author(s):  
Brandon J. Hopkins ◽  
Nikhil Padhye ◽  
Alison Greenlee ◽  
James Torres ◽  
Levon Thomas ◽  
...  

Wave-driven reverse osmosis desalination systems can be a cost-effective option for providing a safe and reliable source of drinking water for large coastal communities. Such systems usually require the stabilization of pulsating pressures for desalination purposes. The key challenge is to convert a fluctuating pressure flow into a constant pressure flow. To address this task, stub-filters, accumulators, and radially elastic-pipes are considered for smoothing the pressure fluctuations in the flow. An analytical model for fluidic capacitance of accumulators and elastic pipes are derived and verified. Commercially available accumulators in combination with essentially rigid (and low cost) piping are found to be a cost-effective solution for this application, and a model for selecting accumulators with the required fluidic-capacitance for the intended system is thus presented.


Author(s):  
Brandon McHaffie ◽  
Peter Routledge ◽  
Alessandro Palermo

<p>Research on low-damage systems has been significant in the past decade. These systems combine post- tensioning, which provides self-centring; and typically use replaceable devices, which give energy dissipation. WSP has used recent research, carried out at the University of Canterbury, on low-damage bridge piers and applied this into a real structure – the Wigram-Magdala Link Bridge. This is believed to be the first bridge in New Zealand and possibly worldwide to adopt such a system. Given this was the first application of the system to a real structure, there were some valuable learnings during design and construction. Firstly, the application of axial dissipaters has some limitations due to available material sizes, construction difficulty and aesthetics. Secondly, there is still some additional cost and complexity associated with using the low-damage system. Given these difficulties, this paper presents an alternative design philosophy which better captures the benefits of the low-damage system, which include cost-effective repair method, controlled damage and additional robustness and resilience. The alternative design philosophy presented is expected to result in reduced construction costs by reducing pier and foundation demands. Peak displacements and forces will be compared to the results from non-linear time history analysis to verify the performance of the low-damage connection using scaled ground motions. Furthermore, the paper will present the possible application of an alternative dissipation device, the lead extrusion damper, which can further improve the performance of low-damage connections.</p>


Sign in / Sign up

Export Citation Format

Share Document