Research and Application of Drag Reducer for Oil Products

Author(s):  
Zhongyuan Guan ◽  
Jinghua Liang ◽  
Chunyang Liu ◽  
Weichun Chang ◽  
Feng Zhu ◽  
...  

Taking the exact demands of chemical additive components added in oil products into account, it is necessary to prepare a drag reducer both with desirable functions and pure composition for oil products differing from that for crude oil. However, that is evidently difficult. This article presents the research and application of a newly-developed drag reducer for oil products, which is innocuous to oil products and easy to handle in its applications. The preparation of the drag reducer was based upon a series of integrative techniques involving adsorbent purification of monomers, implementation of bulk polymerization at low temperatures and ultramicro grinding of polyalphaolefins at normal temperatures. Simultaneously, the drag reducer can be manufactured in different scales by purpose-made equipment system with a little manual operation on safe, reliable, efficient and convenient base. The application test of the drag reducer was conducted successfully and has been commercially applied in Lanzhou-Chengdu-Chongqing Oil Products Pipeline. The application results for the pipeline showed that this drag reducer, as a feasible and available technical method, was not only positively helpful to increase the flow rate of Lanzhou-Chengdu-Chongqing Oil Products Pipeline, but also of great significance for other oil products pipelines in throughput increase and energy saving.

Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4255
Author(s):  
Elżbieta Szaruga ◽  
Zuzanna Kłos-Adamkiewicz ◽  
Agnieszka Gozdek ◽  
Elżbieta Załoga

This paper presents the synchronisation of economic cycles of GDP and crude oil and oil products cargo volumes in major Polish seaports. On the one hand, this issue fits into the concept of sustainable development including decoupling; on the other hand, the synchronisation may be an early warning tool. Crude oil and oil products cargo volumes are a specific barometer that predicts the next economic cycle, especially as they are primary sources of energy production. The research study applies a number of TRAMO/SEATS methods, the Hodrick–Prescott filter, spectral analysis, correlation and cross-correlation function. Noteworthy is the modern approach of using synchronisation of economic cycles as a tool, which was described in the paper. According to the study results, the cyclical components of the cargo traffic and GDP were affected by the leakage of other short-term cycles. However, based on the cross-correlation, it was proved that changes in crude oil and oil products cargo volumes preceded changes in GDP by 1–3 quarters, which may be valuable information for decision-makers and economic development planners.


Energies ◽  
2019 ◽  
Vol 12 (22) ◽  
pp. 4325
Author(s):  
Zhihua Wang ◽  
Yunfei Xu ◽  
Yi Zhao ◽  
Zhimin Li ◽  
Yang Liu ◽  
...  

Wax deposition during crude oil transmission can cause a series of negative effects and lead to problems associated with pipeline safety. A considerable number of previous works have investigated the wax deposition mechanism, inhibition technology, and remediation methods. However, studies on the shearing mechanism of wax deposition have focused largely on the characterization of this phenomena. The role of the shearing mechanism on wax deposition has not been completely clarified. This mechanism can be divided into the shearing dispersion effect caused by radial migration of wax particles and the shearing stripping effect caused by hydrodynamic scouring. From the perspective of energy analysis, a novel wax deposition model was proposed that considered the flow parameters of waxy crude oil in pipelines instead of its rheological parameters. Considering the two effects of shearing dispersion and shearing stripping coexist, with either one of them being the dominant mechanism, a shearing dispersion flux model and a shearing stripping model were established. Furthermore, a quantitative method to distinguish between the roles of shearing dispersion and shearing stripping in wax deposition was developed. The results indicated that the shearing mechanism can contribute an average of approximately 10% and a maximum of nearly 30% to the wax deposition process. With an increase in the oil flow rate, the effect of the shearing mechanism on wax deposition is enhanced, and its contribution was demonstrated to be negative; shear stripping was observed to be the dominant mechanism. A critical flow rate was observed when the dominant effect changes. When the oil flow rate is lower than the critical flow rate, the shearing dispersion effect is the dominant effect; its contribution rate increases with an increase in the oil flow temperature. When the oil flow rate is higher than the critical flow rate, the shearing stripping effect is the dominant effect; its contribution rate increases with an increase in the oil flow temperature. This understanding can be used to design operational parameters of the actual crude oil pipelines and address the potential flow assurance problems. The results of this study are of great significance for understanding the wax deposition theory of crude oil and accelerating the development of petroleum industry pipelines.


Author(s):  
Yuanyuan Chen ◽  
Jing Gong ◽  
Xiaoping Li ◽  
Nan Zhang ◽  
Shaojun He ◽  
...  

Pipeline commissioning, which is a key link from engineering construction to production operation, is aim to fill an empty pipe by injecting water or oil to push air out of it. For a large-slope crude oil pipeline with great elevation differences, air is fairly easy to entrap at downward inclined parts. The entrapped air, which is also called air pocket, will cause considerable damage on pumps and pipes. The presence of it may also bring difficulties in tracking the location of the liquid head or the interface between oil and water. It is the accumulated air that needed to be exhausted in time during commissioning. This paper focuses on the simulation of liquid-gas replacement in commissioning process that only liquid flow rate exists while gas stays stagnant in the pipe and is demanded to be replaced by liquid. Few previous researches have been found yet in this area. Consequently, the flow in a V-section pipeline consisted of a downhill segment and a subsequent uphill one is used here for studying both the formation and exhaustion behaviors of the intake air. The existing two-fluid model and simplified non-pressure wave model for gas-liquid stratified flow are applied to performance the gas formation and accumulation. The exhausting process is deemed to be a period in which the elongated bubble (Taylor bubble) is fragmented into dispersed small bubbles. A mathematical model to account for gas entrainment into liquid slug is proposed, implemented and incorporated in a computational procedure. By taking into account the comprehensive effects of liquid flow rate, fluid properties, surface tension, and inclination angle, the characteristics of the air section such as the length, pressure and mass can be calculated accurately. The model was found to show satisfactory predictions when tested in a pipeline. The simulation studies can provide theoretical support and guidance for field engineering application, which are meanwhile capable of helping detect changes in parameters of gas section. Thus corresponding control measures can be adopted timely and appropriately in commissioning process.


Author(s):  
Li Wang ◽  
Changchun Wu ◽  
Lili Zuo ◽  
Yanfei Huang ◽  
Haihong Chen

Transfer tank farms play an important role in an oil products pipeline network, which receive oil products from upstream pipelines and deliver them to downstream pipelines. The scheduling problem for oil products supply chain is very complicated because of numerous constraints to be considered. The published literatures on schedule optimization of oil products pipeline network usually focus on the batch plans of each pipeline, without consideration on the receipt and delivery schedule of transfer tank farm. In this paper, a mixed-integer linear programming (MILP) model is developed for the schedule optimization of transfer tank farm. The objective of the model is to minimize switching times of the tank operations of a tank farm during a planning horizon, while fulfilling the products transmission requirements of the upstream and downstream pipelines of the tank farm. The constraints of the model include material balance, the operational rules of tanks, the topological structure constraints of the tank farm, the settling period of the oil products stored in dedicated tank and so on. To satisfy the constraint of fulfilling the specific transmission requirements of pipelines, concepts of static and dynamic time slot are proposed. A continuous time representation is used to obtain accurate optimal schedules and decrease scale of the model by reducing the number of variables. The model is solved by CPLEX solver for a transfer tank farm of an oil products pipeline network in China. Some examples are tested under different scenarios and the results show that global optimal solution can be obtain at acceptable computational costs.


Significance Import-dependent Lebanon has faced acute energy shortages in recent months, reflecting poor infrastructure, unsustainable policies and a lack of hard currency. Leaders are exploring rival regional options for the supply of gas and oil products: primarily Iraq, Iran and Egypt gas via Jordan and Syria. Impacts Since Lebanon has no functional refinery, it would be unable to use direct crude oil imports. Reliable provision of petrol and diesel will ultimately require a painful complete end to subsidies. Installation of solar power is already happening rapidly through private initiatives, but its contribution will remain minor.


2018 ◽  
Vol 4 (1) ◽  
pp. 30
Author(s):  
Yuli Andriani ◽  
Hotmalina Silitonga ◽  
Anjar Wanto

Analisis pada penelitian penting dilakukan untuk tujuan mengetahui ketepatan dan keakuratan dari penelitian itu sendiri. Begitu juga dalam prediksi volume ekspor dan impor migas di Indonesia. Dilakukannya penelitian ini untuk mengetahui seberapa besar perkembangan ekspor dan impor Indonesia di bidang migas di masa yang akan datang. Penelitian ini menggunakan Jaringan Syaraf Tiruan (JST) atau Artificial Neural Network (ANN) dengan algoritma Backpropagation. Data penelitian ini bersumber dari dokumen kepabeanan Ditjen Bea dan Cukai yaitu Pemberitahuan Ekspor Barang (PEB) dan Pemberitahuan Impor Barang (PIB). Berdasarkan data ini, variabel yang digunakan ada 7, antara lain: Tahun, ekspor minyak mentah, impor minyak mentah, ekspor hasil minyak, impor hasil minyak, ekspor gas dan impor gas. Ada 5 model arsitektur yang digunakan pada penelitian ini, 12-5-1, 12-7-1, 12-8-1, 12-10-1 dan 12-14-1. Dari ke 5 model yang digunakan, yang terbaik adalah 12-5-1 dengan menghasilkan tingkat akurasi 83%, MSE 0,0281641257 dengan tingkat error yang digunakan 0,001-0,05. Sehingga model ini bagus untuk memprediksi volume ekspor dan impor migas di Indonesia, karena akurasianya antara 80% hingga 90%.   Analysis of the research is Imporant used to know precision and accuracy of the research itself. It is also in the prediction of Volume Exports and Impors of Oil and Gas in Indonesia. This research is conducted to find out how much the development of Indonesia's exports and Impors in the field of oil and gas in the future. This research used Artificial Neural Network with Backpropagation algorithm. The data of this research have as a source from custom documents of the Directorate General of Customs and Excise (Declaration Form/PEB and Impor Export Declaration/PIB). Based on this data, there are 7 variables used, among others: Year, Crude oil exports, Crude oil Impors, Exports of oil products, Impored oil products, Gas exports and Gas Impors. There are 5 architectural models used in this study, 12-5-1, 12-7-1, 12-8-1, 12-10-1 and 12-14-1. Of the 5 models has used, the best models is 12-5-1 with an accuracy 83%, MSE 0.0281641257 with error rate 0.001-0.05. So this model is good to predict the Volume of Exports and Impors of Oil and Gas in Indonesia, because its accuracy between 80% to 90%.


2021 ◽  
Vol 2020 (67) ◽  
pp. 154-184
Author(s):  
دانية اياد جاسم ◽  
أ. د . فلاح خلف علي

The oil refining industry in Iraq is one of the industries of strategic importance, and what these industries have been subjected to destruction, obsolescence and neglect in a way that led to the deterioration of oil products in quantity and quality, and in a manner that is not commensurate with Iraq's capabilities in the field of daily crude oil production, as well as its incompatibility with laws and standards. In addition to the inability of these industries to achieve self-sufficiency and resort to closing the gap through imports. The study assumes that rebuilding the oil refineries in Iraq on modern foundations commensurate with international environmental laws and standards, will contribute to achieving self-sufficiency in high-quality oil products and open new horizons for the refining industry. The study reached several conclusions, the most important of which are the most important reasons for the decline in the production of refineries in Iraq, failure to implement investment projects for the oil refineries sector, reliance on old methods of liquidation, obsolescence of treatment units, neglect of maintenance and maintenance operations, and continuous stops due to the interruption of electrical current, and sabotage of some pipelines that transport crude oil to the refineries. The researcher recommended that the existence of a strong sector of refineries in Iraq capable of securing energy sources and achieving self-sufficiency, in addition to its ability to compete, that achieving this goal requires working on building new and modern refineries and rehabilitating old refineries to increase production capacities and obtain high-quality oil products to Iraq can compete in the global


Sign in / Sign up

Export Citation Format

Share Document