Global Buckling Assessment of High Pressure and High Temperature (HP/HT) Offshore Pipeline

Author(s):  
Seung-Ho Yang ◽  
Jong-Jin Jung ◽  
Yun-Hak Kim ◽  
Woo-Seob Lee ◽  
Jong-Bae Kim

In recent years, requirement for the consideration of global buckling due to high pressure/high temperature (HP/HT) condition has increased in the detailed design of offshore pipelines on a seabed. The interaction between pipeline and seabed including support structures or sleepers gives a significant effect on buckling behavior. Global lateral buckling analysis has been carried out to assess the stability of offshore HP/HT pipelines considering the interaction between HP/HT submarine pipeline system/foundation structure and seabed. A non-linear finite element method is used in the present static analysis using the ABAQUS program. The FE model considers concrete sleepers as well as 3-D profile of the seabed. The stress distribution and lateral amplitude of the pipeline were evaluated and remedial measures were suggested to ensure that pipe stresses and strains are kept within allowable limits. Sleepers are designed as a buckle trigger which can provide artificial imperfection to allow pipe to move laterally and mitigate axial force. Comparative study could provide design strategy of pipeline related to sleeper supports.

Energies ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 2393 ◽  
Author(s):  
Salaheldin Elkatatny

Drilling in high-pressure high-temperature (HPHT) conditions is a challenging task. The drilling fluid should be designed to provide high density and stable rheological properties. Barite is the most common weighting material used to adjust the required fluid density. Barite settling, or sag, is a common issue in drilling HPHT wells. Barite sagging may cause many problems such as density variations, well-control problems, stuck pipe, downhole drilling fluid losses, or induced wellbore instability. This study assesses the effect of using a new copolymer (based on styrene and acrylic monomers) on the rheological properties and the stability of an invert emulsion drilling fluid, which can be used to drill HPHT wells. The main goal is to prevent the barite sagging issue, which is common in drilling HPHT wells. A sag test was performed under static (vertical and 45° incline) and dynamic conditions in order to evaluate the copolymer’s ability to enhance the suspension properties of the drilling fluid. In addition, the effect of this copolymer on the filtration properties was performed. The obtained results showed that adding the new copolymer with 1 lb/bbl concentration has no effect on the density and electrical stability. The sag issue was eliminated by adding 1 lb/bbl of the copolymer to the invert emulsion drilling fluid at a temperature >300 °F under static and dynamic conditions. Adding the copolymer enhanced the storage modulus by 290% and the gel strength by 50%, which demonstrated the power of the new copolymer to prevent the settling of the barite particles at a higher temperature. The 1 lb/bbl copolymer’s concentration reduced the filter cake thickness by 40% at 400 °F, which indicates the prevention of barite settling at high temperature.


2021 ◽  
Author(s):  
Danar Tri Yurindatama ◽  
Nawin Singh ◽  
Vinod Pillai

Abstract In recent years, the global buckling assessment of offshore pipelines in High Pressure-High Temperature (HPHT) condition become increasingly challenging since more complex pipeline system arrangement e.g. pipe(s) or cable(s) is strapped onto a larger pipeline, are rapidly utilized in many areas. Yet, the detailed guideline to assess the buckle of bundles remains unclear, therefore this study will focus to investigate on a methodical and reproducible approach to analyze in-service buckling behavior of bundled offshore pipeline system. The global buckling behavior of bundled offshore pipeline system in this study is investigated using commercial Finite Element (FE) software. Two carbon steel pipelines with different diameter are bundled and the buckling behavior is studied under the influence of buckle triggers. In the actual condition, the rogue buckle trigger is generated from OOS (out of straightness) or imperfection e.g. due to laying tolerance. Varying dimension parameter such as diameter ratio between the main pipeline and strapped pipeline are considered to understand the impact of this parameter on the buckle behavior. The study begins with a comparison of the results using numerical and analytical approaches on a straight pipeline in an unbuckled condition for validation purposes. The design parameters including wall thickness, process data, and pipe-soil interaction data, are varied since it influences the buckle behavior. In addition, some design parameter such as material properties and pipeline length will be adopted from a typical offshore pipeline project and the values are fixed so the exercise can focus on the most governing parameters. Following this, two numerical modelling methods, the equivalent properties method and the connector method, are presented in this study to simulate bundled systems. With a good agreement between the analytical and numerical approach, some buckle trigger is introduced on the numerical model of the bundled pipeline so the system is able to buckle and the behavior can be evaluated further. The strain level, lateral displacement, axial feed-in and pipe integrity shall be reported in the post-buckle conditions for both main pipe and strapped pipe as per current code and standard requirement. With more reliable results of buckling assessment for bundled pipeline system, it gives technical confidence and a major saving in both Capital Expenditure (CAPEX) and Operational Expenditure (OPEX). Industry has put serious effort through various Joint Industry Projects (JIP) to develop the global buckling assessment guideline in order to ensure long term integrity operation. Although the JIP guideline is predominantly for single pipeline system, similar assessment is demanded also for bundled pipeline system which described in this study. Key findings of the assessment are presented along with an overview of the design process and the typical mitigation techniques to be considered for similar subsea pipeline projects.


2001 ◽  
Vol 120 (5-6) ◽  
pp. 237-242 ◽  
Author(s):  
Emmanuel Soignard ◽  
Maddury Somayazulu ◽  
Ho-Kwang Mao ◽  
Jianjun Dong ◽  
Otto F. Sankey ◽  
...  

Author(s):  
Alok Kumar ◽  
Michael E. Hogan

Despite continued advances in rubber technology, the design of elastomeric flexible connections, used in offshore pipelines transporting high-pressure/high-temperature hydrocarbon fluid/gas mixture, remains more of an art than a science, primarily due to the intricate behavior of rubber. The mechanical response of rubber is dependent on time, temperature and mode of loading. It is susceptible to explosive decompression damage. Rubber’s non-linear stress-strain curves, creep, hysteresis and other properties are influenced not only by the method of fabrication but also by age. If these characteristics are not accounted for properly, the result can be less precision in design compared with metals. At present, there are no codes or standards that directly address the design, analysis or evaluation of the elastomeric flexible connections used in offshore oilfield applications. Based on the results of the recent research, the significance of key parameters that affect the short term and long term structural performance of elastomeric flexible connections is presented in this paper.


Author(s):  
Abdelfettah Fredj ◽  
George Comfort ◽  
Aaron Dinovitzer

Offshore pipelines in ice environments are increasingly required to operate at higher pressure and temperature conditions. These offshore pipelines can be subjected to stress and strains resulting from loading condition and ice scour created in the area. This paper describes a study performed to investigate the mechanical behavior of High Pressure/High Temperature (HP/HT) pipelines to withstand ice scouring events. A parametric study was completed to define the governing parameters for HP/HT pipeline design. This study was based on 3D continuum modeling with an ALE (Arbitrary Lagrangian Eulerian) formulation that was developed and run using LS-DYNA. The model incorporated large deformation theory, non-linear pipe-soil interaction and non-linear pipe material behavior to define ice interaction induced pipe deformations.


Author(s):  
Si-Ming Zhou ◽  
Jing-Zhong Tong ◽  
Gen-Shu Tong ◽  
Zhang Lei ◽  
Xiang Jiang ◽  
...  

Concrete-filled steel tubular (CFST) column has been widely used in engineering practice. In the process of assembling two columns to form a slender member, assembling errors (AE) are inevitably produced at the section of connection. When the AE are too large, the global buckling resistance of slender column would be significantly affected. Therefore, it is necessary to investigate the influence of AE on the stability performance of slender CFST columns. In this study, an axial compressive test involving three CFST columns with AE (AE-CFST columns) was conducted. A refined finite element (FE) model is established for further parametric analysis. Based on a simplified analytical model by analyzing the isolated steel connecting plate, a theoretical formula is proposed for predicting the critical thickness [Formula: see text] of the connecting plate. When the thickness [Formula: see text] of the connecting plate meets its requirement, the failure at the section of connection caused by AE could be effectively prevented. Stability design curves considering the influence of AE ratio (the ratio between assembling error and sectional depth of column) are proposed based on numerous FE examples. It is found that the proposed design curves are reliable for the design of AE-CFST columns with different AE ratios.


2019 ◽  
Vol 74 (4) ◽  
pp. 357-363
Author(s):  
Daniela Vitzthum ◽  
Hubert Huppertz

AbstractThe mixed cation triel borate Ga4In4B15O33(OH)3 was synthesized in a Walker-type multianvil apparatus at high-pressure/high-temperature conditions of 12.5 GPa and 1300°C. Although the product could not be reproduced in further experiments, its crystal structure could be reliably determined via single-crystal X-ray diffraction data. Ga4In4B15O33(OH)3 crystallizes in the tetragonal space group I41/a (origin choice 2) with the lattice parameters a = 11.382(2), c = 15.244(2) Å, and V = 1974.9(4) Å3. The structure of the quaternary triel borate consists of a complex network of BO4 tetrahedra, edge-sharing InO6 octahedra in dinuclear units, and very dense edge-sharing GaO6 octahedra in tetranuclear units.


Sign in / Sign up

Export Citation Format

Share Document