Validating ILI Accuracy Using API 1163

Author(s):  
Lucinda Smart ◽  
Harvey Haines

It is important to validate the accuracy of in-line inspection (ILI) tools to know how many excavations are needed to maintain the integrity of a pipeline segment. Performing sufficient excavations is important to ensure there are no defects left in the pipeline that have even a remote chance of failure. In some cases additional excavations may be necessary to ensure safety where in other cases no excavations may be necessary. This paper looks at using spatially recorded metal-loss data collected “in-the-ditch” to measure the accuracy of ILI tool results. Examples of spatial in-ditch data are laser scans for external corrosion and UT scans for internal corrosion. Spatially mapped metal loss, because all of the corrosion area is mapped, has the advantage of allowing more comparisons to be made for a given corrosion area and also allows the interaction among corrosion pits to be studied for examining burst pressure calculation accuracy. From our studies we find the depth error for shallow corrosion 10%–20% wt deep is often not representative of deeper corrosion in the same pipeline and the interaction criteria for ILI tools needs to be larger than the interaction criteria for in-ditch data. Examples are shown with these types of results, and by interpreting the results in conjunction with API 1163, certain ILI runs are shown that require no excavations where others may require additional excavations than suggested by normal +/−10% wt ILI data.

Author(s):  
Terry Huang ◽  
Shahani Kariyawasam ◽  
Patrick Yeung ◽  
Mohammad Shariq

The recent industry wide post-ILI pipeline ruptures due to external corrosion happened in a relatively short period of time after the ILI using high-resolution Magnetic Flux Leakage (MFL) technology. Failure investigations show that the critical defects that caused these pipeline ruptures are generally long and complex corrosion, which typically consist of a number of deep corrosion pits (i.e. localized metal-loss) within an overall shallower, but relatively large corrosion area (i.e. generalized metal-loss). This has led us to investigate the gaps and “blind spots” of the ILI-based corrosion management program particularly to find out why existing methods fail to effectively identify and remediate such critical defects before they fail. Learning from these post-ILI failures, TransCanada has developed many assessment methods and criteria for identifying challenging areas. The many types of criteria account for blind spots from different perspectives in a multi-faceted manner. The traditional ILI based corrosion management programs calculate a deterministic failure pressure ratio (FPR) and maximum anomaly depth and ensure these do not reach a limiting value. However, this strictly deterministic assessment does not acknowledge the uncertainties, particularly the significant uncertainties in the ILI measurements, assessment models, and material properties. When all uncertainties are accounted for and a probabilistic excavation criterion is used, the excavations reveal that certain anomalies are found to be near-critical in the field even though the deterministic FPR based criteria did not identify these. The probabilistic criteria identifies longer shallower anomalies, with non-critical ILI based FPR values, as anomalies that have a higher probability of exceeding the FPR criteria in-the-ditch (where the uncertainties are minimized). This is because the probabilistic criterion acknowledges that longer anomalies are more sensitive to the depth measurement error and have a higher probability of becoming critical in-the-ditch. This “blind spot” in the deterministic method was overcome by incorporating a probabilistic criterion into the corrosion management program. The effectiveness of these new measures is discussed by examining excavation results of this program and subsequent ILI results. This paper discusses the approach to corrosion management where new learning and knowledge as well as new-found uncertainties are readily accommodated. The approach is also transparent and documented; so that new information can be incorporated into the assessment and post-ILI failures can be prevented more effectively.


2018 ◽  
Vol 765 ◽  
pp. 155-159
Author(s):  
Tosapolporn Pornpibunsompop ◽  
Purit Thanakijkasem

High temperature corrosion of 310S austenitic stainless steel in simulated rocket combustion gas at 900 degree Celsius was investigated and discussed in this paper. 310S austenitic stainless steel was chosen because it was used for building some components of a rocket launcher. The corrosive atmosphere was prepared by mixing of hydrochloric acid and distilled water with 5.5 mole per liter then, boiling that solution and feeding into a corrosion testing chamber. The chamber was set up at 900 degree Celsius with duration 210 hrs. After testing, the corroded specimen was microscopically characterized by OM and SEM/EDS techniques. The corrosion layer was classified into three main sublayers: peeling-off scale, external corrosion sublayer, and internal corrosion sublayer. The local chemical information was analyzed by XRD (in case of peeling-off scale) and SEM/EDS (in case of external and internal corrosion sublayers). The peeling off scale mainly comprised Fe2O3and Fe21.3O32ferrous oxides because they needed much oxygen consumption to exist. In case of external and internal sublayers, there were a lot of pore tunnels and corrosion products. Chlorine and/or hydrogen chloride would penetrate through a passive film and, then, metal chlorides was formed on both external and internal corrosion sublayers. Metal chlorides would volatile because of their lower evaporation temperature than the testing temperature. Moreover, they were oxidized by oxygen in wet condition and resulted metal oxides mostly remaining on the external corrosion sublayer.


Author(s):  
Jai Prakash Sah ◽  
Mohammad Tanweer Akhter

Managing the integrity of pipeline system is the primary goal of every pipeline operator. To ensure the integrity of pipeline system, its health assessment is very important and critical for ensuring safety of environment, human resources and its assets. In long term, managing pipeline integrity is an investment to asset protection which ultimately results in cost saving. Typically, the health assessment to managing the integrity of pipeline system is a function of operational experience and corporate philosophy. There is no single approach that can provide the best solution for all pipeline system. Only a comprehensive, systematic and integrated integrity management program provides the means to improve the safety of pipeline systems. Such programme provides the information for an operator to effectively allocate resources for appropriate prevention, detection and mitigation activities that will result in improved safety and a reduction in the number of incidents. Presently GAIL (INDIA) LTD. is operating & maintaining approximately 10,000Kms of natural gas/RLNG/LPG pipeline and HVJ Pipeline is the largest pipeline network of India which transports more than 50% of total gas being consumed in this country. HVJ pipeline system consists of more than 4500 Kms of pipeline having diameter range from 04” to 48”, which consist of piggable as well as non-piggable pipeline. Though, lengthwise non-piggable pipeline is very less but their importance cannot be ignored in to the totality because of their critical nature. Typically, pipeline with small length & connected to dispatch terminal are non-piggable and these pipelines are used to feed the gas to the consumer. Today pipeline industries are having three different types of inspection techniques available for inspection of the pipeline. 1. Inline inspection 2. Hydrostatic pressure testing 3. Direct assessment (DA) Inline inspection is possible only for piggable pipeline i.e. pipeline with facilities of pig launching & receiving and hydrostatic pressure testing is not possible for the pipeline under continuous operation. Thus we are left with direct assessment method to assess health of the non-piggable pipelines. Basically, direct assessment is a structured multi-step evaluation method to examine and identify the potential problem areas relating to internal corrosion, external corrosion, and stress corrosion cracking using ICDA (Internal Corrosion Direct Assessment), ECDA (External Corrosion Direct Assessment) and SCCDA (Stress Corrosion Direct Assessment). All the above DA is four steps iterative method & consist of following steps; a. Pre assessment b. Indirect assessment c. Direct assessment d. Post assessment Considering the importance of non-piggable pipeline, integrity assessment of following non piggable pipeline has done through direct assessment method. 1. 30 inch dia pipeline of length 0.6 km and handling 18.4 MMSCMD of natural gas 2. 18 inch dia pipeline of length 3.65 km and handling 4.0 MMSCMD of natural gas 3. 12 inch dia pipeline of length 2.08 km and handling 3.4 MMSCMD of natural gas In addition to ICDA, ECDA & SCCDA, Long Range Ultrasonic Thickness (LRUT-a guided wave technology) has also been carried out to detect the metal loss at excavated locations observed by ICDA & ECDA. Direct assessment survey for above pipelines has been conducted and based on the survey; high consequence areas have been identified. All the high consequence area has been excavated and inspected. No appreciable corrosion and thickness loss have observed at any area. However, pipeline segments have been identified which are most vulnerable and may have corrosion in future.


Author(s):  
Oliver Moghissi ◽  
Deanna Burwell ◽  
Rick Eckert ◽  
Jose Vera ◽  
Narasi Sridhar ◽  
...  

An Internal Corrosion Direct Assessment methodology is proposed for wet gas pipelines (WG-ICDA). Wet gas systems (i.e., those normally containing liquids) include storage and gathering systems with large gas-to-liquid volume ratios. Wet gas systems are not well represented by ICDA for normally dry gas, and existing corrosion models applied to wet gas systems are not sufficiently targeted at integrity verification. The essential focus of WG-ICDA compared to other internal corrosion models is the discrimination of conditions along the length of a pipeline so that possible local integrity threats with respect to internal corrosion are identified and mitigated. The basis of WG-ICDA is to prioritize locations along a pipeline segment by factors of traditional corrosion rate, flow effects, and other influencing factors. Corrosion rate depends on gas quality, liquid chemistry, pressure, and temperature. The corrosion rate can be normalized because WG-ICDA as integrity verification only concerns itself with corrosion distribution (i.e., the location along a pipeline segment where corrosion is more severe than other locations). Flow effects include possible flow regimes and the presence of water from condensation (at locations of heat loss). Expected possible flow regimes are stratified, slugging, and annular. The final term captures other factors influencing corrosion rate distribution. These factors include corrosion inhibition (batch and continuous, solubility and dispersibility in hydrocarbon and aqueous phases), biocide treatments, hydrocarbon condensates (including emulsion characteristics), maintenance pigging, bacteria, solids/scale, and other products. WG-ICDA follows the same four-step process as all other Direct Assessment (DA) methods: 1) Pre-Assessment: Data is collected, a feasibility analysis is performed, and the pipeline segment is divided into regions. 2) Indirect Inspections: Measurements are taken or calculations are performed to prioritize locations along a particular pipeline segment for susceptibility to corrosion. For WG-ICDA, the factors contributing to the distribution of corrosion will be included and an initial assumption about corrosion distribution will be made. WG-ICDA is sufficiently flexible to allow the use of existing wet gas models within the framework of the overall process. 3) Direct (or Detailed) Examinations: The pipe is excavated and examined at locations prioritized to have the highest likelihood of corrosion. The examination must have sufficient detail to determine the existence, extent, and severity of corrosion. Examination of the internal surface of a pipe can involve non-destructive examination methods sufficient to identify and characterize internal defects. 4) Post-Assessment: Analysis of the indirect and direct examination data is performed to determine overall pipeline integrity, prioritize repairs, and set the interval for the next assessment. If the results of excavations do not match the original assumption, the corrosion distribution model will be updated to guide the next excavations (i.e., the operator returns to step 2).


2021 ◽  
Author(s):  
Andrew Imrie ◽  
Maciej Kozlowski ◽  
Omar Torky ◽  
Aditya Arie Wijaya

AbstractMonitoring pipe corrosion is one of the critical aspects in the well intervention. Such analysis is used to evaluate and justify any remedial actions, to prolong the longevity of the well. Typical corrosion evaluation methods of tubulars consist of multifinger caliper tools that provide high-resolution measurements of the internal condition of the pipe. Routinely, this data is then analyzed and interpreted with respect to the manufacture's nominal specification for each tubular. However, this requires assumptions on the outer diameter of the tubular may add uncertainty, and incorrectly calculate the true metal thicknesses. This paper will highlight cases where the integration of such tool and electromagnetic (EM) thickness data adds value in discovering the true condition of both the first tubular and outer casings.These case studies demonstrate the use of a multireceiver, multitransmitter electromagnetic (EM) metal thickness tool operating at multiple simultaneous frequencies. It is used to measure the individual wall thickness across multiple strings (up to five) and operates continuously, making measurements in the frequency domain. This tool was combined with a multifinger caliper to provide a complete and efficient single-trip diagnosis of the tubing and casing integrity. The combination of multifinger caliper and EM metal thickness tool results gives both internal and external corrosion as well as metal thickness of first and outer tubular strings.The paper highlights multiple case studies including; i) successfully detecting several areas of metal loss (up to greater than 32%) on the outer string, which correlated to areas of the mobile salt formation, ii) overlapping defects in two tubulars and, iii) cases where a multifinger caliper alone doesn't provide an accurate indication of the true wall thickness. The final case highlights the advantages of integrating multiple tubular integrity tools when determining the condition of the casing wall.Metal thickness tools operating on EM principles benefit from a slim outer diameter design that allows the tools to pass through restrictions which typically would prevent ultrasonic scanning thickness tools. Additionally, EM tools are unaffected by the type of fluid in the wellbore and not affected by any non-ferrous scale buildup that may present in the inside of the tubular wall. Combinability between complementary multifinger caliper technology and EM thickness results in two independent sensors to provide a complete assessment of the well architecture.


2015 ◽  
Vol 74 (4) ◽  
Author(s):  
M. K. F. M. Ali ◽  
N. Md. Noor ◽  
N. Yahaya ◽  
A. A. Bakar ◽  
M. Ismail

Pipelines play an extremely important role in the transportation of gases and liquids over long distance throughout the world. Internal corrosion due to microbiologically influenced corrosion (MIC) is one of the major integrity problems in oil and gas industry and is responsible for most of the internal corrosion in transportation pipelines. The presence of microorganisms such as sulfate reducing bacteria (SRB) in pipeline system has raised deep concern within the oil and gas industry. Biocide treatment and cathodic protection are commonly used to control MIC. However, the solution is too expensive and may create environmental problems by being too corrosive. Recently, Ultraviolet (UV) as one of the benign techniques to enhance mitigation of MIC risk in pipeline system has gained interest among researchers. An amount of 100 ml of modified Baar’s medium and 5 ml of Desulfovibrio vulgaris (strain 7577) seeds was grown in 125 ml anaerobic vials with carbon steel grade API 5L-X70 coupons at the optimum temperature of 37°C and pH 9.5 for fifteen days. This was then followed by exposing the medium to UV for one hour. Results from present study showed that UV radiation has the ability to disinfect bacteria, hence minimizing the risk of metal loss due to corrosion in steel pipeline. 


Author(s):  
Nobuyuki Yoshida ◽  
Atsushi Yamaguchi

Fitness-For-Service (FFS) assessment using Finite Element Analysis (FEA) has been a problem in deciding yes-no which vary from evaluator to evaluator. The difference in decision making is caused by the degree of freedom in modeling a FEA model. In this study, burst pressures of pipes with local metal loss were calculated by using FEA in order to investigate the influence of thickness measurement intervals on FFS assessment. The analyzed pressures by FEA were verified by burst tests. A pipe specimen, which was thinned by corrosion under insulation in the actual plant, was used for the burst tests. Shape of the pipe specimen was measured by laser displacement meter and extracted at several types of interval. It is concluded that the analyzed pressures in various measurement intervals showed almost no difference, but were higher than the actual burst pressure of the specimen.


2005 ◽  
Vol 127 (3) ◽  
pp. 244-254 ◽  
Author(s):  
M. G. Lozev ◽  
R. W. Smith ◽  
B. B. Grimmett

Offshore pipeline failure statistics have been collected for more than 30 years now and illustrate that the riser predominantly fails as a result of corrosion. The consistent wetting and drying in the splash zone combined with defects in the coatings are the usual contributors to the problem. Risers are inspected at some determined frequency and can be done by internal and external methods. Inspecting by either means brings into account caveats and limitations from the technology used as well as human factors. For example, external inspections can be inefficient and inaccurate with some tools missing defects in areas of coating disbondment. In addition, internal inspections sometimes create false positives and can miss defects. These inaccuracies in the technologies or the techniques used may miss defects that eventually lead to failure. On the other hand, using corrosion mapping and fitness-for-service (FFS) assessment from the data collected, along with the inherent conservatism of this data from limited measurement accuracy, may result in the premature replacement of risers. A literature search is being conducted to review existing riser inspection methods and identify candidate nondestructive methods for riser inspection. These methods should be capable of detecting and monitoring general corrosion, localized corrosion pitting, and stress-corrosion cracking (sulfide or hydrogen induced) as external or internal corrosion damage. Thus far, this search has found that assessing the remaining service life of aging risers is largely dependent on the accuracy of analyzing corrosion damage to the riser surface in the atmospheric, splash (tidal), submerged, and buried environmental zones. The accuracy of each technology was analyzed. The capabilities and limitations of each method/technique used for riser inspection are summarized. The investigation is focused on long- and short-range ultrasonic techniques used for initial screening and corrosion mapping. These techniques can be deployed to detect a significant reduction in wall thickness using guided and torsional waves or to map accurately a corrosion damage using single/multiple transducers and phased-array probes in manual or automated mode. A pulsed eddy-current technique that uses a stepped or pulsed input signal for the detection of corrosion areas under insulation (CUI) is also being evaluated. This allows the detection of wall-thinning areas in the riser without removing the outside coatings. In addition, it is found that filmless, real-time, and digital radiography can be used to find internal and external corrosion defects in an insulated splash zone while the riser remains in service. A survey of nondestructive evaluation (NDE) manufacturing companies, NDE inspection companies, and operating companies was completed to collect information about current instrumentation and inspection/operators’ experience for riser inspection. Examples of advanced riser inspection instrumentation and field results are included. The ability of the candidate technologies to be adapted to riser variations, the stage of standardization, and costs are also discussed.


CORROSION ◽  
1956 ◽  
Vol 12 (10) ◽  
pp. 66-72
Author(s):  
M. UNZ

Abstract Inherent protection against corrosion hazards is essential in water supply systems. External corrosion is reduced by the use of cement coatings and separation of heterogeneous line sections. Internal galvanic action, especially in prestressed concrete structures, is eliminated by separation or matching of materials. A complete solution of the problem is attained only by electrically nonconducting pipe. Internal corrosion and blocking of pipes can be prevented by water treatment. Investigations on an irrigation system confirm that bare or bituminous coated steel components are anodic to cement coated lines. Irrigation outlets during the dry season also usually are anodic to the trunk line. In anodic areas a chemical absorption process takes place in the cement coating, which intrinsically increases its protective value. The presence of an adequate layer of pure cement over the steel surface is essential for this protective effect. 7.2


2020 ◽  
Vol 60 (2) ◽  
pp. 598
Author(s):  
M. Brameld ◽  
S. Thomas ◽  
G. S. Malab

External pitting corrosion has been a long standing issue for stainless steel pressure equipment systems on Woodside offshore facilities. Experience has shown that this pitting cannot be effectively managed by inspection and, as a result, the current policy is that piping replacement should be planned once the presence of significant pitting corrosion has been identified. All Woodside offshore facilities have 316-grade stainless steel pressure equipment which is experiencing active external corrosion pitting to varying degrees. This represents the potential for hundreds of millions of dollars in piping replacement across the company. STOPAQ is an established product for the mitigation of external corrosion in carbon steel equipment however, it has not previously been used at Woodside on stainless steel equipment to address pitting corrosion. Through collaboration with the Woodside Future Laboratory at Monash University, Materials and Corrosion Engineering, Woodside Energy Limited has challenged the old established theory regarding the mechanism of pitting in stainless steel and a test program has been devised to validate the new way of thinking, which postulates that elimination of moisture and oxygen from the pits, by the application of an impervious layer like STOPAQ, will stifle the corrosion reaction and arrest the pitting. A recently completed test program at Monash which utilised computed tomography (CT) scanning, to very accurately determine the volume of corrosion pits, has confirmed that the application of STOPAQ to pitted stainless steel is very effective at mitigating this type of corrosion.


Sign in / Sign up

Export Citation Format

Share Document