Direct Printing of Capacitive Touch Sensors on Flexible Substrates by Additive E-Jet Printing With Silver Nanoinks

2016 ◽  
Author(s):  
Hantang Qin ◽  
Yi Cai ◽  
Jingyan Dong ◽  
Yuan-Shin Lee

In this paper, techniques of direct printing of capacitive touch sensors on flexible substrates are presented. Capacitive touch sensors were fabricated by using electrohydrodynamic inkjet (E-jet) printing onto flexible substrates. Touch pad sensors can be achieved with optimized design of silver nanoink tracks. An analytical model was developed to predict touch pad capacitance, and experiments were conducted to study the effects of sensor design (e.g. number of electrodes, electrode length, and electrode distance) on the capacitance of printed coplanar capacitance touch sensors. Details of the fabrication techniques were developed to enable rapid prototype flexible sensors with simple structure and good sensitivity. The presented techniques can be used for the on-demand fabrication of different conductive patterns for flexible electronics with high-resolution and good transparency.

Author(s):  
Hantang Qin ◽  
Yi Cai ◽  
Jingyan Dong ◽  
Yuan-Shin Lee

In this paper, techniques of direct printing of capacitive touch sensors on flexible substrates are presented. Capacitive touch sensors were fabricated by using electrohydrodynamic inkjet (E-jet) printing onto flexible substrates. Touch pad sensors can be achieved with optimized design of silver nanoink tracks. An analytical model was developed to predict touch pad capacitance, and experiments were conducted to study the effects of sensor design (e.g., number of electrodes, electrode length, and electrode distance) on the capacitance of printed coplanar capacitance touch sensors. Details of the fabrication techniques were developed to enable rapid prototype flexible sensors with simple structure and good sensitivity. The presented techniques can be used for the on-demand fabrication of different conductive patterns for flexible electronics with high resolution and good transparency


2012 ◽  
Vol 1394 ◽  
Author(s):  
Jesse Huso ◽  
Hui Che ◽  
John L. Morrison ◽  
Dinesh Thapa ◽  
Michelle Huso ◽  
...  

ABSTRACTBandgap engineered ZnSxO1-x films were grown on Fluorinated Ethylene Propylene (FEP) substrates and analyzed using transmission spectroscopy. FEP is considered as a potential substrate for application in flexible electronics and semiconductor films.


Author(s):  
Khalid Alzoubi ◽  
Susan Lu ◽  
Bahgat Sammakia ◽  
Mark Poliks

Flexible electronics represent an emerging area in the electronics packaging and systems integration industry with the potential for new product development and commercialization in the near future. Manufacturing electronics on flexible substrates will produce low cost devices that are rugged, light, and flexible. However, electronic systems are vulnerable to failures caused by mechanical and thermal stresses. For electronic systems on flexible substrates repeated stresses below the ultimate tensile strength or even below the yield strength will cause failures in the thin films. It is known that mechanical properties of thin films are different from those of bulk materials; so, it is difficult to extrapolate bulk material properties on thin film materials. The objective of this work is to study the behavior of thin-film metal coated flexible substrates under high cyclic bending fatigue loading. Polyethylene terephthalate (PET) and polyethylene naphthalate (PEN) are widely used substrates in the fabrication of microelectronic devices. Factors affecting the fatigue life of thin-film coated flexible substrates were studied, including thin film thickness, temperature, and humidity. A series of experiments for sputter-deposited copper on PET substrates were performed. Electrical resistance and crack growth rate were monitored during the experiments at specified time intervals. High magnification images were obtained to observe the crack initiation and propagation in the metal film. Statistical analysis based on design of experiments concepts was performed to identify the main factors and factor’s interaction that affect the life of a thin-film coated substrate. The results of the experiments showed that the crack starts in the middle of the sample and slowly grows toward the edges. Electrical resistance increases slightly during the test until the crack length covers about 90% of the total width of the sample where a dramatic increase in the resistance takes place.


2021 ◽  
pp. 2140009
Author(s):  
Huatan Chen ◽  
Guoyi Kang ◽  
Jiaxin Jiang ◽  
Juan Liu ◽  
Xiang Wang ◽  
...  

Printing orderly patterns on the insulating collector is the key for the development and application of flexible electronics. However, electrospinning on the insulating collector still has the problem of unstable jet due to the charge accumulation. The alternating current (AC)-induced electrohydrodynamic direct-writing (EDW) technology is a good way to decrease the interferences of charge repulsion, which is beneficial to printing orderly micro/nanostructures on the insulating collector. In this work, the sinusoidal AC-induced EDW is used to enhance the stability of charged jet and the deposition behaviors under AC electric field are also studied. The reciprocation transferring of charges induced by the AC electric field decreased the density of the accumulating charges on the insulating collector. The effect of AC electric field parameters on the direct-written micro/nanostructures are investigated to optimize the printing process. As the voltage peak increases, the fiber deposition bandwidth shows a trend of decreasing first and then increasing. Increasing the voltage frequency appropriately is beneficial to decrease the bandwidth of fiber deposition and to increase the stability of the jet. By improving the stability and controllability of the jet printing process, precise micro/nanopatterns can be direct-written on the insulating collector. This research provides a good foundation for expanding the application fields of EDW.


2012 ◽  
Vol 2012 (DPC) ◽  
pp. 000968-000985
Author(s):  
Pingye Xu ◽  
Michael C. Hamilton

This work explores a method to construct metal-coated carbon nanotube (CNT) structures, which are potential candidates for interconnects, transmission lines and contact structures. This simple method is suitable to many applications including flexible substrates. In this work, electroplating is used to coat a carbon nanotube surface with Indium. CNT films are prepared using drop casting method on different substrates: Ni coated silicon wafer, copy paper and photo paper. The CNT dispersion used for this work is prepared using sonication and centrifugation with a surfactant. The resulting dispersion has 0.8 wt. % of multi-walled CNTs and 0.5 wt. % of sodium dodecyl sulfate (SDS) in DI water. This dispersion is modified to reduce resistivity by adding either silver nanoparticle powder or silver ink. Electroplating is done at room temperature with a current density of 0.02 A/cm2. This work addresses two issues about electroplating on CNT: low electrical conductivity of CNT film and low CNT adhesion to substrate. A CNT film on a Ni surface displays poor adhesion; the film peels off easily during ultrasonication and electroplating. After thermal annealing or microwave treatment, adhesion between the CNT film and Ni is greatly enhanced such that no CNT film peel-off is observed during electroplating. A CNT film on paper has a high sheet resistance. As a result, Indium is only plated on the CNT film near the attached electrode. To reduce the film sheet resistance, the CNT solution is modified by adding silver nanoparticle powder or silver ink. Ethanol rinsing is also performed on the CNT film surface to wash away surfactant and further reduce sheet resistance. On-going work involves ink-jet printing of CNT solutions onto flexible substrates. Indium, as an example metallization, will be plated on these ink-jet printing defined transmission lines and interconnects patterns. Performance of these structures will be presented.


2020 ◽  
Vol 8 (46) ◽  
pp. 16443-16451
Author(s):  
Wendong Yang ◽  
Florian Mathies ◽  
Eva L. Unger ◽  
Felix Hermerschmidt ◽  
Emil J. W. List-Kratochvil

A do-it-yourself silver particle-free ink is presented, which shows good stability, low cost and excellent printability. The ink is formulated in selected alcohols. Highly conductive silver patterns were printed on both glass and flexible substrates.


Author(s):  
Hantang Qin ◽  
Chuang Wei ◽  
Jingyan Dong ◽  
Yuan-Shin Lee

In this paper, a rapid prototyping method for fabrication of highly conductive micropatterns on insulating substrates was developed and evaluated. Sub-20 μm microstructures were printed on flexible insulating substrates using alternating current (AC) modulated electrohydrodynamic jet (e-jet) printing. The presented technique resolved the challenge of current rapid prototyping methods in terms of limited resolution and conductivity for microelectronic components for flexible electronics. Significant variables of fabrication process, including voltage, plotting speeds, curing temperature, and multilayer effect, were investigated to achieve reliable printing of silver tracks. Sub-20 μm silver tracks were successfully fabricated with resistivity about three times than bulk silver on flexible substrates, which indicates the potential applications of electrohydrodynamic printing in flexible electronics and medical applications, such as lab-on-chip systems.


2015 ◽  
Vol 224 ◽  
pp. 53-63 ◽  
Author(s):  
A. Capasso ◽  
A.E. Del Rio Castillo ◽  
H. Sun ◽  
A. Ansaldo ◽  
V. Pellegrini ◽  
...  

Author(s):  
Pradeep Lall ◽  
Jinesh Narangaparambil ◽  
Ved Soni ◽  
Scott Miller

Abstract Flexible electronics is a rapid emerging trend in consumer-electronics with ever-increasing applications showing feasibility of functionality with flexibility. Aerosol Jet printing technology has gained rapid acceptance for additive printing owing to non-contact deposition and ability to print on non-planar surfaces. Prior work on aerosol-jet print processes primarily focuses on single-layer printing, taking into account different parameters such as mass flow, line width, sintering conditions, and overspray. Flexible PCBs in complex applications are envisioned to be multi-layered, involving stacking of interconnections and connection between successive layers through use of z-axis connections. Aerosol-jet printing method allows the printing of interconnections with a number of inks including silver, copper, and carbon with fine lines and spaces in neighborhood of 10μm. Process recipes for manufacturing multilayer circuits and system scale-up methods are required. The objective of the paper is to establish process-recipes for z-axis interconnects and quantify process variability with Aerosol-jet print process needed for high volume scale-up. Conductive interconnects have been printed using the ultrasonic atomizer and the interlayer dielectrics have been printed using the pneumatic atomizer. The effect of thermal sintering on the performance of the printed circuits has been quantified through measurements of interconnect resistance and shear load to failure. This paper explores the printing of multi-layer upto 8 conductive layers. Sintering profile for lower resistance per unit length and higher shear load to failure was tested.


Sign in / Sign up

Export Citation Format

Share Document