Experimental Study of the High Cycle Fatigue of Thin Film Metal on Polyethylene Terephthalate for Flexible Electronics Applications

Author(s):  
Khalid Alzoubi ◽  
Susan Lu ◽  
Bahgat Sammakia ◽  
Mark Poliks

Flexible electronics represent an emerging area in the electronics packaging and systems integration industry with the potential for new product development and commercialization in the near future. Manufacturing electronics on flexible substrates will produce low cost devices that are rugged, light, and flexible. However, electronic systems are vulnerable to failures caused by mechanical and thermal stresses. For electronic systems on flexible substrates repeated stresses below the ultimate tensile strength or even below the yield strength will cause failures in the thin films. It is known that mechanical properties of thin films are different from those of bulk materials; so, it is difficult to extrapolate bulk material properties on thin film materials. The objective of this work is to study the behavior of thin-film metal coated flexible substrates under high cyclic bending fatigue loading. Polyethylene terephthalate (PET) and polyethylene naphthalate (PEN) are widely used substrates in the fabrication of microelectronic devices. Factors affecting the fatigue life of thin-film coated flexible substrates were studied, including thin film thickness, temperature, and humidity. A series of experiments for sputter-deposited copper on PET substrates were performed. Electrical resistance and crack growth rate were monitored during the experiments at specified time intervals. High magnification images were obtained to observe the crack initiation and propagation in the metal film. Statistical analysis based on design of experiments concepts was performed to identify the main factors and factor’s interaction that affect the life of a thin-film coated substrate. The results of the experiments showed that the crack starts in the middle of the sample and slowly grows toward the edges. Electrical resistance increases slightly during the test until the crack length covers about 90% of the total width of the sample where a dramatic increase in the resistance takes place.

2014 ◽  
Vol 895 ◽  
pp. 41-44
Author(s):  
Seiw Yen Tho ◽  
Kamarulazizi Ibrahim

In this work, the influences of plasma pre-treatment on polyethylene terephthalate (PET) substrate to the properties of ZnO thin film have been carried out. ZnO thin films were successfully grown on PET substrate by spin coating method. In order to study the effects of plasma pre-treatment, a comparison of treated and untreated condition was employed. Water contact angle measurement had been carried out for PET wettability study prior to ZnO thin film coating. Morphology study of ZnO thin film was performed by scanning probe microscope (SPM). Besides, optical study of the ZnO thin film was done by using UV-vis spectrophotometer. All the measured results show that plasma pre-treatment of PET substrate plays an important role in enhancing the wettability of PET and optical properties of the ZnO thin films. In conclusion, pre-treatment of PET surface is essential to produce higher quality ZnO thin film on this particular substrate in which would pave the way for the integration of future devices.


2018 ◽  
Vol 790 ◽  
pp. 3-8 ◽  
Author(s):  
Shin Ichi Furusawa ◽  
Tomosato Ida

Tensile stress was applied to β-AgI thin film prepared on a polyethylene terephthalate film, and the ion conduction response in the direction of the tensile extension was investigated. The ionic conductivity of the β-AgI thin film decreases and the activation energy for ionic conduction increases with increasing extension ratio. This behaviour is attributed to the modulation of the crystal framework by the extension of the AgI thin film.


2021 ◽  
Vol 1027 ◽  
pp. 91-98
Author(s):  
Li Xia Guan ◽  
Zhao Yi Zhou ◽  
Yi Jing Huang

The development of flexible electronics towards for the direction of bend ability, lightweight, portability, long life against falling. The performance of the substrate in the flexible electronics plays a very important role in the development of electronics. In this article, three preparation technologies of thin films are introduced, including CVD, PVD and ALD. The paper also introduces the research progress on the preparation of substrate barrier films, and one main challenge that may face by the preparation of thin film materials. In order to satisfy the development of flexible electronics, improving the substrate’s performance constantly is needed. Finally, the development of preparing barrier films is prospected.


2013 ◽  
Vol 80 (2) ◽  
Author(s):  
Yong Wang ◽  
Xue Feng ◽  
Bingwei Lu ◽  
Gangfeng Wang

The buckling of thin films with natural nonlinearity can provide a useful tool in many applications. In the present paper, the mechanical properties of controllable buckling of thin films are investigated by accounting for both geometric nonlinearity and surface effects at nanoscale. The effects of surface elasticity and residual surface tension on both static and dynamic behaviors of buckled thin films are discussed based on the surface-layer-based model. The dynamic design strategy for buckled thin films as interconnects in flexible electronics is proposed to avoid resonance in a given noise environment based on the above analysis. Further discussion shows that the thermal and piezoelectric effects on mechanical behavior of buckled thin film are equivalent to that of residual surface tension.


2021 ◽  
Author(s):  
Zhuang-hao ZHENG ◽  
Jun-yu NIU ◽  
Tian-bao CHEN ◽  
Yuexing Chen ◽  
Fu LI ◽  
...  

Abstract Ag2Se is a promising n-type material which has been proposed for thermoelectric (TE) application. Achieving high TE power factor for Ag2Se thin film to use in micro and wearable electronic systems has recently attracted great attention. In present work, Ag2Se thin films were prepared via a simple co-evaporation method, which provides an effective way for adjusting its composition. By selective modification of Ag content, the carrier concentration is optimized, leading to a PF of 6.27 μWcm-1K-2. Furthermore, the carrier mobility increased while carrier concentration is maintained after performing an annealing process, thus contributes to relatively high Seebeck coefficient and decent electrical conductivity for Ag2.05Se film annealed at 423 K. As a result, a record-high power factor of 20.51 μWcm-1K-2 at 393 K is achieved, which is the best result of the Ag2Se thin film prepared by evaporation method. This work has opened the way for environmentally friendly room-temperature thermoelectricity.


2011 ◽  
Vol 121-126 ◽  
pp. 4295-4299
Author(s):  
Hao MA Yun ◽  
Lu Ping Chao ◽  
J. S Hsu

The thesis aims to characterize the mechanical properties and stresses for thin films deposited on the circular substrates. First, the thin films with the same deposition condition were successively deposited on the distinct substrates using the evaporation technique. The phase-shifting Twyman-Green interferometer (PSTGI) was then employed to measure the warpage of the film-substrate structures and therefore the intrinsic stresses and thermal stresses can be calculated from the well-known Stoney’s formula. The coefficients of thermal expansion (CTE) and Young’s modulus of thin films were also obtained from the Stoney’s theory. Furthermore, the merit of full-field character of optical interferometry was used to propose a novel methodology using the Chen and Ou’s theory to improve the accuracy and to reduce the experiment procedures in the traditional measurement of the aforementioned mechanical properties. Finally, the measured results corresponding to the traditional and proposed methods were respectively substituted into their adopted theories to compare their difference. The results reveal that the accuracy of proposed methodology is considerably improved and the experimental procedures are reduced to those of the traditional methods.


CrystEngComm ◽  
2014 ◽  
Vol 16 (27) ◽  
pp. 6244-6249 ◽  
Author(s):  
Xuezhen Zhai ◽  
Huimin Jia ◽  
Yange Zhang ◽  
Yan Lei ◽  
Jie Wei ◽  
...  

Pure CZTS thin film is formed directly at a temperature of 250 °C, the lowest temperature of any current fabrication system, on both flexible stainless steel and rigid FTO substrates.


2019 ◽  
Vol 10 ◽  
pp. 222-227 ◽  
Author(s):  
Yevhenii Havryliuk ◽  
Oleksandr Selyshchev ◽  
Mykhailo Valakh ◽  
Alexandra Raevskaya ◽  
Oleksandr Stroyuk ◽  
...  

The effect of flash-lamp annealing (FLA) on the re-crystallization of thin films made of colloidal Cu2ZnSnS4 nanocrystals (NCs) is investigated by Raman spectroscopy. Unlike similar previous studies of NCs synthesized at high temperatures in organic solvents, NCs in this work, which have diameters as small as 2–6 nm, were synthesized under environmentally friendly conditions in aqueous solution using small molecules as stabilizers. We establish the range of FLA conditions providing an efficient re-crystallization in the thin film of NCs, while preserving their kesterite structure and improving their crystallinity remarkably. The formation of secondary phases at higher FLA power densities, as well as the dependence of the formation on the film thickness are also investigated. Importantly, no inert atmosphere for the FLA treatment of the NCs is required, which makes this technology even more suitable for mass production, in particular for printed thin films on flexible substrates.


1997 ◽  
Vol 476 ◽  
Author(s):  
Wei-Tsu Tseng ◽  
Li-Wen Chen ◽  
G.-C. Tu

AbstractVariations in stress and grain size of Ti- and TiN- capped Al thin films passivated by fluorinated silicon dioxide (SiOF) during repetitive thermal cycling are investigated. The amount of stress relaxation, elastic and plastic behavior of these thin film structures are compared. Ti and TiN cap layers strengthen the single Al film significantly while the presence of SiOF induces plastic deformation of metal layers. Less grain growth is associated with a dielectric passivated Al film. The penetration of fluorine into Al upon annealing can be reduced by a TiN barrier layer.


Sign in / Sign up

Export Citation Format

Share Document