A Novel Approach to Determine the Cutting Temperature Under Consideration of the Tool Wear

Author(s):  
Thomas Bergs ◽  
Bingxiao Peng ◽  
Daniel Schraknepper ◽  
Thorsten Augspurger

Abstract In metal cutting process, modeling and predicting the tool wear development has been researched for decades. Many efforts have been made to study the cutting temperature as an indicator for the tool wear behavior. However, the determination of the cutting temperature in the critical contact area in process is still a challenge. In order to build temperature-dependent tool wear models, the temperature distribution of the workpiece was captured in this paper by an infrared thermography in orthogonal cutting of Direct Aged Inconel 718 with cemented carbide cutting tool WC-15Co. Instead of studying the temperature in critical cutting zone directly, the workpiece temperature distribution around the flank wear surface was determined inversely with the analytical Jaeger-solution based on the experimental data. The determined maximum cutting temperature on the flank wear surface has been successfully verified by FEM chip formation simulations. By means of this inverse approach, the cutting temperature on the flank surface can be determined as a function of tool wear VB. The experimental results showed that the cutting temperature increased with the increase of the tool wear VB. By means of this method, the temperature on the flank wear surface can be used as an important physical indicator to model and predict the tool wear development in future work.

2006 ◽  
Vol 129 (3) ◽  
pp. 513-519 ◽  
Author(s):  
Kuan-Ming Li ◽  
Steven Y. Liang

The objective of this paper is to present physical and quantitative models for the rate of tool flank wear in turning under flood cooling conditions. The resulting models can serve as a basis to predict tool life and to plan for optimal machining process parameters. Analytical models including cutting force analysis, cutting temperature prediction, and tool wear mechanics are presented in order to achieve a thermo-mechanical understanding of the tool wear process. The cutting force analysis leverages upon Oxley’s model with modifications for lubricating and cooling effect of overhead fluid application. The cutting temperature was obtained by considering workpiece shear deformation, friction, and heat loss along with a moving or stationary heat source in the tool. The tool wear mechanics incorporate the considerations of abrasive, adhesion, and diffusion mechanisms as governed by contact stresses and temperatures. A model of built-up edge formation due to dynamic strain aging has been included to quantify its effects on the wear mechanisms. A set of cutting experiments using carbide tools on AISI 1045 steels were performed to calibrate the material-dependent coefficients in the models. Experimental cutting data were also used to validate the predictive models by comparing cutting forces, cutting temperatures, and tool lives under various process conditions. The results showed that the predicted tool lives were close to the experimental data when the built-up edge formation model appropriately captured this phenomenon in metal cutting.


Author(s):  
Y Huang ◽  
S Y Liang

The understanding of cutting temperature distribution at the presence of tool wear can aid in addressing important metal cutting issues such as part surface integrity, tool life and dimensional tolerance under practical operating conditions. The effect of tool wear on the cutting temperature distribution was first modelled by Chao and Trigger and there have been very few followers since. In Chao's model, the primary heat source was assumed to have no effect on the workpiece temperature rise and the chip temperature rise was treated as a bulk quantity. This paper analytically quantifies the tool wear effect by taking into account the contributions of the primary heat source and considering the distribution of chip temperature rise. On the chip side, the primary shear zone is modelled as a uniform moving oblique band heat source and the secondary shear zone as a non-uniform moving band heat source within a semi-infinite medium. On the tool side, the effects of both the secondary and the rubbing heat sources are modelled as non-uniform static rectangular heat sources within a semi-infinite medium. For the workpiece side, the study models the primary shear zone as a uniform moving oblique band heat source and the rubbing heat source as a non-uniform moving band heat source within a semi-infinite medium. The proposed model is verified based on the published experimental data in the orthogonal cutting of Armco iron. Furthermore, a comparison case is presented on the temperature variation with respect to cutting speed, feed rate and flank wear length.


2020 ◽  
Vol 15 ◽  
Author(s):  
Lei Li ◽  
Yujun Cai ◽  
Guohe Li ◽  
Meng Liu

Background: As an important method of remanufacturing, laser cladding can be used to obtain the parts with specific shapes by stacking materials layer by layer. The formation mechanism of laser cladding determines the “Staircase effect”, which makes the surface quality can hardly meet the dimensional accuracy of the parts. Therefore, the subsequent machining must be performed to improve the dimensional accuracy and surface quality of cladding parts. Methods: In this paper, chip formation, cutting force, cutting temperature, tool wear, surface quality, and optimization of cutting parameters in the subsequent cutting of laser cladding layer are analyzed. Scholars have expounded and studied these five aspects but the cutting mechanism of laser cladding need further research. Results: The characteristics of cladding layer are similar to that of difficult to machine materials, and the change of parameters has a significant impact on the cutting performance. Conclusion: The research status of subsequent machining of cladding layers is summarized, mainly from the aspects of chip formation, cutting force, cutting temperature, tool wear, surface quality, and cutting parameters optimization. Besides, the existing problems and further developments of subsequent machining of cladding layers are pointed out. The efforts are helpful to promote the development and application of laser cladding remanufacturing technology.


Coatings ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 266
Author(s):  
M.S.I. Chowdhury ◽  
B. Bose ◽  
S. Rawal ◽  
G.S. Fox-Rabinovich ◽  
S.C. Veldhuis

Tool wear phenomena during the machining of titanium alloys are very complex. Severe adhesive interaction at the tool chip interface, especially at low cutting speeds, leads to intensive Built Up Edge (BUE) formation. Additionally, a high cutting temperature causes rapid wear in the carbide inserts due to the low thermal conductivity of titanium alloys. The current research studies the effect of AlTiN and CrN PVD coatings deposited on cutting tools during the rough turning of a Ti6Al4V alloy with severe BUE formation. Tool wear characteristics were evaluated in detail using a Scanning Electron Microscope (SEM) and volumetric wear measurements. Chip morphology analysis was conducted to assess the in situ tribological performance of the coatings. A high temperature–heavy load tribometer that mimics machining conditions was used to analyze the frictional behavior of the coatings. The micromechanical properties of the coatings were also investigated to gain a better understanding of the coating performance. It was demonstrated that the CrN coating possess unique micromechanical properties and tribological adaptive characteristics that minimize BUE formation and significantly improve tool performance during the machining of the Ti6Al4V alloy.


2012 ◽  
Vol 557-559 ◽  
pp. 1364-1368
Author(s):  
Yong Feng ◽  
Mu Lan Wang ◽  
Bao Sheng Wang ◽  
Jun Ming Hou

High-speed metal cutting processes can cause extremely rapid heating of the work material. Temperature on the machined surface is critical for surface integrity and the performance of a precision component. However, the temperature of a machined surface is challenging for in-situ measurement.So, the finite element(FE) method used to analyze the unique nonlinear problems during cutting process. In terms of heat-force coupled problem, the thermo-plastic FE model was proposed to predict the cutting temperature distribution using separated iterative method. Several key techniques such as material constitutive relations, tool-chip interface friction and separation and damage fracture criterion were modeled. Based on the updated Lagrange and arbitrary Lagrangian-Eulerian (ALE) method, the temperature field in high speed orthogonal cutting of carbon steel AISI-1045 were simulated. The simulated results showed good agreement with the experimental results, which validated the precision of the process simulation method. Meanwhile, the influence of the process variables such as cutting speed, cutting depth, etc. on the temperature distribution was investigated.


2020 ◽  
Vol 902 ◽  
pp. 97-102
Author(s):  
Tran Trong Quyet ◽  
Pham Tuan Nghia ◽  
Nguyen Thanh Toan ◽  
Tran Duc Trong ◽  
Luong Hong Sam ◽  
...  

This paper presents a prediction of cutting temperature in turning process, using a continuous cutting model of Johnson-Cook (J-C). An method to predict the temperature distribution in orthogonal cutting is based on the constituent model of various material and the mechanics of their cutting process. In this method, the average temperature at the primary shear zone (PSZ) and the secondary shear zone (SSZ) were determined for various materials, based on a constitutive model and a chip-formation model using measurements of cutting force and chip thicknes. The J-C model constants were taken from Hopkinson pressure bar tests. Cutting conditions, cutting forces and chip thickness were used to predict shear stress. Experimental cutting heat results with the same cutting parameters using the minimum lubrication method (MQL) were recorded through the Testo-871 thermal camera. The thermal distribution results between the two methods has a difference in value, as well as distribution. From the difference, we have analyzed some of the causes, finding the effect of the minimum quantity lubrication parameters on the difference.


2014 ◽  
Vol 621 ◽  
pp. 611-616 ◽  
Author(s):  
Yan Juan Hu ◽  
Yao Wang ◽  
Zhan Li Wang

In order to study the temperature field distribution in the process of machining, the finite element theory was used to establish the orthogonal cutting finite element model, and the key technologies were discussed simultaneously. By using ABAQUS software for cutting AISI1045 steel temperature field of numerical simulation, the conclusion about changing rule of cutting temperature field can be gotten. The results show that this method can efficiently simulate the distribution of temperature field of the workpiece, cutter and scraps, which is effected by thermo-mechanical coupling in metal work process. It provides the theory evidence for the intensive study of metal-cutting principle, optimizing cutting parameters and improving processing technic and so on.


1963 ◽  
Vol 85 (1) ◽  
pp. 33-37 ◽  
Author(s):  
H. Takeyama ◽  
R. Murata

This paper treats a fundamental investigation of tool wear and tool life mainly from the viewpoint of flank wear. The result reveals that the mechanism of tool wear in turning can be classified into two basic types: The mechanical abrasion which is directly proportional to the cutting distance and independent of the temperature; and the other is, so to speak, a physicochemical type which is considered to be a rate process closely associated with the temperature, of course. Although it depends upon the cutting condition which type of wear plays a more important role, the latter is predominant under usual conditions. According to the analyses and the experimental results, it has been found out that the tool life from the standpoint of flank wear can be predicted to a first approximation by the initial cutting temperature.


Author(s):  
Aruna Prabha Kolluri ◽  
Srinivasa Prasad Balla ◽  
Satya Prasad Paruchuru

Abstract The 3D Finite element method (FEM) is an efficient tool to predict the variables in the cutting process, which is otherwise challenging to obtain with the experimental methods alone. The present study combines both experimental findings and finite element simulation outcomes to investigate the effect of tool material on output process variables, such as vibrations, cutting temperature distribution and tool wear mechanism. Machining of popular aerospace materials like Ti-6Al-4V and Al7075 turned with coated and uncoated tools are part of the investigation. The authors choose the orthogonal test, measured vibrations and cutting temperatures and used FE simulations to carry out the subsequent validations. This study includes the influence of the predicted heat flux and temperature distribution on the tool wear mechanism. The main aim of this study is to investigate the performance quality of uncoated and coated carbide tools along with its thermal aspects. Comparison of experiment and simulation outcomes shows good agreement with a maximum error of 9.02%. It has been noted that the increase of cutting temperature is proportional to its cutting speed. As the cutting speed increases, it is observed that vibration parameter and flank wear value also increases. Overall, coated carbide turning insert tool is the best method for metal turning with higher rotational speeds of the spindle.


2012 ◽  
Vol 499 ◽  
pp. 348-352 ◽  
Author(s):  
Xiao Li Zhu ◽  
Song Zhang ◽  
X.L. Xu ◽  
H.G. Lv

In the present study, an experimental investigation has been carried out in an attempt to monitor tool wear progress in turning Inconel 718 with coated carbide inserts under the wet cutting condition. First, each experimental test was conducted with a new cutting edge and the turning process was stopped at a certain interval of time. Secondly, the indexable insert was removed from the tool holder and the flank wear of the insert was measured using a three-dimensional digital microscopy (VHX-600E); and then the insert was clamped into the tool holder for the next turning experiment. The final failure of tool wear surfaces were examined under a scanning electron microscope (SEM) equipped with an energy dispersive X-ray spectrometer (EDS). It is indicated that significant flank wear was the predominant failure mode, and the abrasive, adhesive and oxidation wear were the most dominant wear mechanisms which directly control the deterioration and final failure of the cutting tools.


Sign in / Sign up

Export Citation Format

Share Document