A New Non-Invasive Air-Cooled Condenser Monitoring Methodology to Increase Performance

Author(s):  
Fred Caillard ◽  
Francois Screve

Air-Cooled Condenser performance can significantly affect WTE plants bottom-line. Most of the possible ACC performance improvement solutions require some important capital costs (fin tubes replacement, fans blades or motor upgrade, additional ACC cells, addition of preventive air re-circulation panels, etc…). A new low cost tool and methodology is now allowing to gain a very detailed understanding of ACC behaviours and to optimize ACC operations and cleaning schedules. This article is illustrated by the case-study of a WTE located in the south of France (equipped with a 5.5 MW GE condensing turbine), where the facility performance was strongly limited by its ACC, and where additional turbine generator output of more than 1 MW were achieved.

2021 ◽  
Vol 13 (12) ◽  
pp. 6944
Author(s):  
Emma Anna Carolina Emanuelsson ◽  
Aurelie Charles ◽  
Parimala Shivaprasad

With stringent environmental regulations and a new drive for sustainable manufacturing, there is an unprecedented opportunity to incorporate novel manufacturing techniques. Recent political and pandemic events have shown the vulnerability to supply chains, highlighting the need for localised manufacturing capabilities to better respond flexibly to national demand. In this paper, we have used the spinning mesh disc reactor (SMDR) as a case study to demonstrate the path forward for manufacturing in the post-Covid world. The SMDR uses centrifugal force to allow the spread of thin film across the spinning disc which has a cloth with immobilised catalyst. The modularity of the design combined with the flexibility to perform a range of chemical reactions in a single equipment is an opportunity towards sustainable manufacturing. A global approach to market research allowed us to identify sectors within the chemical industry interested in novel reactor designs. The drivers for implementing change were identified as low capital cost, flexible operation and consistent product quality. Barriers include cost of change (regulatory and capital costs), limited technical awareness, safety concerns and lack of motivation towards change. Finally, applying the key features of a Sustainable Business Model (SBM) to SMDR, we show the strengths and opportunities for SMDR to align with an SBM allowing for a low-cost, sustainable and regenerative system of chemical manufacturing.


Smell and Taste are the two very imperative senses which enable us in detection and discrimination of several volatile organic compounds, which in turn may be identified as indicators for specific desirable or undesirable conditions in various industries. Electronic nose and electronic tongue are recent technologies which have attracted many researchers to work in order to provide effective solutions for various industrial applications. This paper overviews the functionality of the electronic nose and electronic tongue and presents a summary of different sensors used for the said technologies. Also, a comparison between an E-nose and E-tongue is presented on the basis of relative figure of merits. A case study is presented wherein application of artificial nose and artificial tongue is discussed for the quality analysis of the fruits. The paper is aimed to emphasis on the possibilities of combining e-nose and e-tongue techniques to enhance the overall performance of the system used for food quality analysis. An E-nose combined with an E-tongue can be a highly efficient, non-invasive, fast and low cost method of quality analysis that can serve the industry and society for the betterment of the mankind


Author(s):  
Elizabeth A. Carter

Imagine an organization where every employee/member/student is fully engaged, working to full potential, adding personal and professional value. How does that happen? It happens through deliberate engagement tools that allow individuals to come together with common interests and goals. The goal is to elevate the skills of the individuals to the point of personal and professional growth. This case study describes an educational environment that is very beneficial in driving development, performance improvement, engagement, and value at a low cost.


Author(s):  
Dominic Marra

In an effort to maximize steam turbine generator output, Montenay Power Corp. (MPC), operator of the Miami Dade County Resources Recovery Facility (DCRRF) undertook a systematic approach to analyze various turbine and steam cycle issues affecting performance. Several low cost methods were used to identify opportunities for increased megawatt generation. Shortfalls within the actual steam path through the turbine blading and internals were quantified with a steam path audit and computerized modeling of the blade path. This audit identified a shortfall of 2.5 megawatts (MW) from the original design and almost a full 1 MW gain through work done during the regular maintenance overhaul. The audit proved to be a valuable tool for making good economic decisions on what seal packing to replace/repair during the TG overhaul. The plant had previously explored re-blading options with the Original Equipment Manufacturer (OEM). This brief study showed turbine internal changes would be capital intensive and carry megawatt improvement claims that were questionable due to various steam cycle issues. Four major operational parameters that affect turbine performance were examined and quantified. Deviations from design steam flow, throttle temperature, back pressure, and throttle pressure accounted for a loss of 24 megawatts (MW) in generation. The three low cost methods used to quantify these losses/opportunities were: 1) Acoustic valve leak detection surveys which identified not only low cost MW gain improvement opportunities but also safety and reliability issues; 2) Helium tracer gas leak detection, used to identify vacuum leaks and confirm the leaks were sealed properly; and 3) A complimentary steam trap survey, which also helped identify lost steam and potential risk to equipment. Preliminary measures were taken to improve steam throttle flow, throttle temperature, back pressure and throttle pressure with a net gain of 7 MW so far. This paper details the methods used and results of the optimization program thus far.


Author(s):  
Kristopher D. Staller

Abstract Cold temperature failures are often difficult to resolve, especially those at extreme low levels (< -40°C). Momentary application of chill spray can confirm the failure mode, but is impractical during photoemission microscopy (PEM), laser scanning microscopy (LSM), and multiple point microprobing. This paper will examine relatively low-cost cold temperature systems that can hold samples at steady state extreme low temperatures and describe a case study where a cold temperature stage was combined with LSM soft defect localization (SDL) to rapidly identify the cause of a complex cold temperature failure mechanism.


2021 ◽  
Vol 43 (5) ◽  
Author(s):  
Amin Taheri-Garavand ◽  
Abdolhossein Rezaei Nejad ◽  
Dimitrios Fanourakis ◽  
Soodabeh Fatahi ◽  
Masoumeh Ahmadi Majd

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Supakorn Harnsoongnoen ◽  
Nuananong Jaroensuk

AbstractThe water displacement and flotation are two of the most accurate and rapid methods for grading and assessing freshness of agricultural products based on density determination. However, these techniques are still not suitable for use in agricultural inspections of products such as eggs that absorb water which can be considered intrusive or destructive and can affect the result of measurements. Here we present a novel proposal for a method of non-destructive, non-invasive, low cost, simple and real—time monitoring of the grading and freshness assessment of eggs based on density detection using machine vision and a weighing sensor. This is the first proposal that divides egg freshness into intervals through density measurements. The machine vision system was developed for the measurement of external physical characteristics (length and breadth) of eggs for evaluating their volume. The weighing system was developed for the measurement of the weight of the egg. Egg weight and volume were used to calculate density for grading and egg freshness assessment. The proposed system could measure the weight, volume and density with an accuracy of 99.88%, 98.26% and 99.02%, respectively. The results showed that the weight and freshness of eggs stored at room temperature decreased with storage time. The relationship between density and percentage of freshness was linear for the all sizes of eggs, the coefficient of determination (R2) of 0.9982, 0.9999, 0.9996, 0.9996 and 0.9994 for classified egg size classified 0, 1, 2, 3 and 4, respectively. This study shows that egg freshness can be determined through density without using water to test for water displacement or egg flotation which has future potential as a measuring system important for the poultry industry.


2021 ◽  
Vol 731 (1) ◽  
pp. 012024
Author(s):  
M N Cahyadi ◽  
E Y Handoko ◽  
R Mardiyanto ◽  
I M Anjasmara ◽  
Khomsin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document