Vibrational and Acoustical Analysis of Trussed Railroad Bridge Under Moving Loads

Author(s):  
R. Daniel Costley ◽  
Henry Diaz-Alvarez ◽  
Mihan H. McKenna

A Finite Element model has been developed for a Pratt truss railroad bridge located at Ft. Leonard Wood, MO. This model was used to investigate the vibration responses of a bridge under vehicle loading. Modeling results have been obtained for a single axle with two wheels traversing the bridge at different speeds. The current model does not include the effects of vehicle suspension. Superposition of multiple axles has been used to represent a locomotive transiting the bridge. The output of the vibration response was used as an input to an acoustic FE model to determine which vibrational modes radiate infrasound. The vibration and acoustic models of the railroad bridge will be reviewed, and results from the analysis will be presented. Measurements from an accelerometer mounted on the bridge agree reasonably well with model results. Infrasound could potentially be used to remotely provide information on the capacity and number of the vehicles traversing the bridge and to monitor the bridge for significant structural damage.

2015 ◽  
Vol 137 (3) ◽  
Author(s):  
R. Daniel Costley ◽  
Henry Diaz-Alvarez ◽  
Mihan H. McKenna ◽  
Anna M. Jordan

A finite element (FE) model was developed for a Pratt truss railroad bridge located at Ft. Leonard Wood, MO. This model was used to investigate the vibration responses of a bridge under vehicle loading. Modeling results were obtained for a single axle with two wheels traversing the bridge at different speeds. The current model does not include the effects of vehicle suspension. Superposition of multiple axles was used to represent a locomotive transiting the bridge. The output of the vibration response was used as an input to an acoustic FE model to determine which vibrational modes radiate infrasound. The vibration and acoustic models of the railroad bridge will be reviewed, and results from the analysis will be presented. Measurements from an accelerometer mounted on the bridge agree reasonably well with model results. Infrasound could potentially be used to remotely provide information on the capacity and number of vehicles traversing the bridge and to monitor the bridge for significant structural damage.


Author(s):  
Kyungdae Kang

The core model of integrally geared centrifugal compressor/expander equipped with thrust collars is developed using finite element model. Each rotor model is coupled through the equivalent stiffness due to thrust collar and the gear web. Subsynchronous vibration caused by the transmitted frequency components from other shafts is analyzed through forced vibration analysis. Unlike conventional frequency response function (FRF), directional FRF technique is adopted because rotordynamic analysis requires that forward and backward mode responses should be identified according to the rotational force direction exerted on the rotor. Previous analysis results utilizing 3D FE model of geared rotors equipped with thrust collars revealed that transmitted vibration level is mostly affected by thrust collars, rather than gear tooth. The rotordynamic model developed in this paper ensures reliability and efficiency in the multi-rotor design equipped with thrust collars providing a systematic way to analyze the multi-rotor vibration responses due to the transmitted forces from one shaft to the other.


2012 ◽  
Vol 256-259 ◽  
pp. 1112-1116 ◽  
Author(s):  
Hai Ping Meng ◽  
Xin Yan Lin

Dynamic methods by structural vibration responses and system dynamic characteristic parameters are the main methods for structural damage identification. Based on the modal strain energy method and used unit location matrix instead of element mass matrix, modal kinetic method is proposed. Two kinds of typical damage condition were simulated and the results show that the method can reduce structural finite element model accuracy, calculate simply and realize the initial damage location.


Author(s):  
Ashwini Gautam ◽  
Chris Fuller ◽  
James Carneal

This work presents an extensive analysis of the properties of distributed vibration absorbers (DVAs) and their effectiveness in controlling the sound radiation from the base structure. The DVA acts as a distributed mass absorber consisting of a thin metal sheet covering a layer of acoustic foam (porous media) that behaves like a distributed spring-mass-damper system. To assess the effectiveness of these DVAs in controlling the vibration of the base structures (plate) a detailed finite elements model has been developed for the DVA and base plate structure. The foam was modeled as a poroelastic media using 8 node hexahedral elements. The structural (plate) domain was modeled using 16 degree of freedom plate elements. Each of the finite element models have been validated by comparing the numerical results with the available analytical and experimental results. These component models were combined to model the DVA. Preliminary experiments conducted on the DVAs have shown an excellent agreement between the results obtained from the numerical model of the DVA and from the experiments. The component models and the DVA model were then combined into a larger FE model comprised of a base plate with the DVA treatment on its surface. The results from the simulation of this numerical model have shown that there has been a significant reduction in the vibration levels of the base plate due to DVA treatment on it. It has been shown from this work that the inclusion of the DVAs on the base plate reduces their vibration response and therefore the radiated noise. Moreover, the detailed development of the finite element model for the foam has provided us with the capability to analyze the physics behind the behavior of the distributed vibration absorbers (DVAs) and to develop more optimized designs for the same.


Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4362
Author(s):  
Renata Kotynia ◽  
Hussien Abdel Baky ◽  
Kenneth W. Neale

This paper presents an investigation of the bond mechanism between carbon fibre reinforced polymer (CFRP) laminates, concrete and steel in the near-surface mounted (NSM) CFRP-strengthened reinforced concrete (RC) beam-bond tests. The experimental program consisting of thirty modified concrete beams flexurally strengthened with NSM CFRP strips was published in. The effects of five parameters and their interactions on the ultimate load carrying capacities and the associated bond mechanisms of the beams are investigated in this paper with consideration of the following investigated parameters: beam span, beam depth, longitudinal tensile steel reinforcement ratio, the bond length of the CFRP strips and compressive concrete strength. The longitudinal steel reinforcement was cut at the beam mid-span in four beams to investigate a better assessment of the influence of the steel reinforcement ratio on the bond behaviour of CFRP to concrete bond behaviour. The numerical analysis implemented in this paper is based on a nonlinear micromechanical finite element model (FEM) that was used for investigation of the flexural behaviour of NSM CFRP-strengthened members. The 3D model based on advanced CFRP to concrete bond responses was introduced to modelling of tested specimens. The FEM procedure presents the orthotropic behaviour of the CFRP strips and the bond response between the CFRP and concrete. Comparison of the experimental and numerical results revealed an excellent agreement that confirms the suitability of the proposed FE model.


2013 ◽  
Vol 456 ◽  
pp. 576-581 ◽  
Author(s):  
Li Fu Xu ◽  
Na Ta ◽  
Zhu Shi Rao ◽  
Jia Bin Tian

A 2-D finite element model of human cochlea is established in this paper. This model includes the structure of oval window, round window, basilar membrane and cochlear duct which is filled with fluid. The basilar membrane responses are calculated with sound input on the oval window membrane. In order to study the effects of helicotrema on basilar membrane response, three different helicotrema dimensions are set up in the FE model. A two-way fluid-structure interaction numerical method is used to compute the responses in the cochlea. The influence of the helicotrema is acquired and the frequency selectivity of the basilar membrane motion along the cochlear duct is predicted. These results agree with the experiments and indicate much better results are obtained with appropriate helicotrema size.


2014 ◽  
Vol 24 (7) ◽  
pp. 1553-1569 ◽  
Author(s):  
H.G. Rábade ◽  
P. Vellando ◽  
F. Padilla ◽  
R. Juncosa

Purpose – A new coupled finite element model has been developed for the joint resolution of both the shallow water equations, that governs the free surface flow, and the groundwater flow equation that governs the motion of water through a porous media. The paper aims to discuss these issues. Design/methodology/approach – The model is based upon two different modules (surface and ground water) previously developed by the authors, that have been validated separately. Findings – The newly developed software allows for the assessment of the fluid flow in natural watersheds taking into account both the surface and the underground flow in the way it really takes place in nature. Originality/value – The main achievement of this work has dealt with the coupling of both models, allowing for a proper moving interface treatment that simulates the actual interaction that takes place between surface and groundwater in natural watersheds.


2014 ◽  
Vol 592-594 ◽  
pp. 2117-2121 ◽  
Author(s):  
P. Veeramuthuvel ◽  
S. Jayaraman ◽  
Shankar Krishnapillai ◽  
M. Annadurai ◽  
A.K. Sharma

The electronics package in a spacecraft is subjected to a variety of dynamic loads during launch phase and suitable thermal environment for the mission life. The dynamic and thermal analyses performed for a structurally reconfigured electronics package. Two different simulation models are developed to carry out the analyses. This paper discusses in two parts, in part-1, the vibration responses are determined at various critical locations, including on the Printed Circuit Board (PCB) for the vibration loads specified by launch vehicle using Finite Element Analysis (FEA). The mechanical properties of PCB are determined from the test specimens, which are then incorporated in the finite element model. In part-2, the steady-state temperature distributions on the components and on the PCB are determined, to check the effectiveness of heat transfer path from the components to the base of the package and to verify the predicted values are within the acceptable temperature limits specified. The predicted temperature values are then compared with on-orbit observations.


Author(s):  
J. Rodriguez ◽  
M. Him

Abstract This paper presents a finite element mesh generation algorithm (PREPAT) designed to automatically discretize two-dimensional domains. The mesh generation algorithm is a mapping scheme which creates a uniform isoparametric FE model based on a pre-partitioned domain of the component. The proposed algorithm provides a faster and more accurate tool in the pre-processing phase of a Finite Element Analysis (FEA). A primary goal of the developed mesh generator is to create a finite element model requiring only essential input from the analyst. As a result, the generator code utilizes only a sketch, based on geometric primitives, and information relating to loading/boundary conditions. These conditions represents the constraints that are propagated throughout the model and the available finite elements are uniformly mapped in the resulting sub-domains. Relative advantages and limitations of the mesh generator are discussed. Examples are presented to illustrate the accuracy, efficiency and applicability of PREPAT.


Author(s):  
Wen-Yu He ◽  
Wei-Xin Ren ◽  
Lei Cao ◽  
Quan Wang

The deflection of the beam estimated from modal flexibility matrix (MFM) indirectly is used in structural damage detection due to the fact that deflection is less sensitive to experimental noise than the element in MFM. However, the requirement for mass-normalized mode shapes (MMSs) with a high spatial resolution and the difficulty in damage quantification restricts the practicability of MFM-based deflection damage detection. A damage detection method using the deflections estimated from MFM is proposed for beam structures. The MMSs of beams are identified by using a parked vehicle. The MFM is then formulated to estimate the positive-bending-inspection-load (PBIL) caused deflection. The change of deflection curvature (CDC) is defined as a damage index to localize damage. The relationship between the damage severity and the deflection curvatures is further investigated and a damage quantification approach is proposed accordingly. Numerical and experimental examples indicated that the presented approach can detect damages with adequate accuracy at the cost of limited number of sensors. No finite element model (FEM) is required during the whole detection process.


Sign in / Sign up

Export Citation Format

Share Document