Hull Forms for Icebreaking Tankers

Author(s):  
Hyun-Soo Kim ◽  
Mun-Keun Ha ◽  
Dang Ahn ◽  
David Molyneux ◽  
Ho Hwan Chun

The optimum design for an icebreaking tanker will depend on the trade route and the cargo delivery requirements. For example, the hull shape of a ship that spends almost all of its time operating in heavy ice can be optimized for low speed icebreaking conditions. In contrast, a ship that spends a small portion of its time in light ice that has been previously broken and the rest of its time in open water can be optimized for different requirements. The challenge for the designer is complicated by the observation that many ship design features that enhance powering performance in ice are detrimental to open water performance. This paper presents predictions of ship resistance in pack ice, level ice and open water for four tanker designs, which include a conventional hull with no modification for ice at all and three designs proposed for operation in Arctic ice conditions. The predictions of ship performance are based on model experiments carried out in Canada and Korea. The resistance of the four hulls in open water, two concentrations of pack ice and two level ice thicknesses are compared and discussed. Information of this sort is essential for developing the optimum ship design for a particular shipping route, given known profiles of open water, pack ice and level ice.

Author(s):  
Kyung Duk Park ◽  
Yong Kwan Chung ◽  
Young Sik Jang ◽  
Hyun Soo Kim ◽  
David Molyneux

This paper describes the development of three candidate hull forms for 190,000 DWT ore carrier for operation in ice covered water. It builds on Hyundai Heavy Industries expertise in ore carrier design, and discusses some of the changes required for operation in heavy ice conditions. The overall concept was to have a target speed of 6 knots in land fast ice 1.7m thick and 15 knots in open water. Three candidate bow shapes were designed and analyzed, based on a common stern arrangement. The development of the hull form included three methods of predicting the performance of the ships in ice. Empirical analysis was carried out for all three hulls, based on experience gained from model experiments on bulk carrier hull forms in ice. Numerical analysis was carried out on all three bow shapes using a computer program (based on the discrete element method) to simulate the interaction between the ship and the ice. Physical model experiments were carried out for resistance and propulsion in level ice, pack ice and ridges on the selected design. As a result of the model experiments, the selected bow shape was modified to reduce its resistance in ice. The improved performance of the modified hull was confirmed with additional numerical simulations.


2019 ◽  
Vol 31 (3) ◽  
pp. 109-115
Author(s):  
Javier Negrete ◽  
Leopoldo H. Soibelzon ◽  
Esteban Soibelzon ◽  
Jorge Lusky

AbstractNinety-six mummified crabeater seals discovered at Seymour Island (Isla Marambio) are reported. Each specimen was georeferenced, photographed and assigned to five different taphonomic states. Previous work stated that seals at Seymour Island get stranded inland around the breeding season. However, it is not clear if the species breeds in this area. The abundance of crabeater seals and the ice condition along Admiralty Sound (Estrecho Bouchard) were obtained by aerial surveys during spring (2015–17). It appears that the species uses the strait as a passage to breeding grounds. Under heavy ice conditions, the seals become stranded in the middle section of this strait and wander inland through a valley that represents the mouth of an ephemeral stream that ends at the pack ice level. This situation was observed in 2014 and 2015 when recently dead seals were found, evidencing that this natural trap is still active. Nonetheless, in 2016 and 2017, during an early breakup of Admiralty Sound, the seals that remained in the area were more numerous than in 2015 but they did not get stranded inland. This early breakup may encourage the seals to breed there in the presence of open water areas with ice floes.


1977 ◽  
Vol 99 (3) ◽  
pp. 491-497 ◽  
Author(s):  
R. S. Pritchard ◽  
M. D. Coon ◽  
M. G. McPhee

A mathematical model is used to simulate sea ice conditions observed during May 15–25, 1975 as part of the Arctic Ice Dynamics Joint Experiment. Calculated motions and forces within the region are compared with observed values. Ice velocity and tractions exerted on the upper and lower ice surface compare well with observed values. Results of another calculation using different boundary layer parameters help assess the effect of boundary layer models on the computed ice drift. The calculated strain field does not compare with observed strains well enough to allow prediction of stress in the pack ice. Several sources of error have been identified for future study.


1981 ◽  
Vol 1981 (1) ◽  
pp. 199-201
Author(s):  
E. M. Reimer

ABSTRACT As petroleum exploration and transportation systems move into increasingly difficult operating environments such as the Labrador Sea, there is a need for more sophisticated oil spill countermeasures and for new cleanup technology. The design of counter measure systems compatible with pack ice conditions cannot be undertaken without some preliminary investigation of oil interactions with ice and, perhaps more crucially, without an estimate of oil dispersion processes in moving pack ice. The characterization of dispersion processes is complicated by seasonal and geographic variations in the physical and dynamic nature of the Labrador ice pack. Nevertheless, on the basis of field observations over the past two winters, it has been possible to generate order-of-magnitude estimates of the probable dispersion and mixing processes. These processes are low compared with open water dispersion processes.


Author(s):  
Ole Bennike ◽  
Anker Weidick

NOTE: This article was published in a former series of GEUS Bulletin. Please use the original series name when citing this article, for example: Bennike, O., & Weidick, A. (1999). Observations on the Quaternary geology around Nioghalvfjerdsfjorden, eastern North Greenland. Geology of Greenland Survey Bulletin, 183, 56-60. https://doi.org/10.34194/ggub.v183.5205 _______________ In North and North-East Greenland, several of the outlet glaciers from the Inland Ice have long, floating tongues (Higgins 1991). Nioghalvfjerdsfjorden (Fig. 1) is today occupied by a floating outlet glacier that is about 60 km long, and the fjord is surrounded by dissected plateaux with broad valleys (Thomsen et al. 1997). The offshore shelf to the east of Nioghalvfjerdsfjorden is unusually broad, up to 300 km wide (Cherkis & Vogt 1994), and recently small low islands were discovered on the western part of this shelf (G. Budeus and T.I.H. Andersson, personal communications 1998). Quaternary deposits are widespread around Nioghalvfjerdsfjorden and include glacial, glaciofluvial, marine, deltaic and ice lake deposits. Ice margin features such as kame deposits and moraines are also common (Davies 1972). The glaciation limit increases from 200 m a.s.l. over the eastern coastal islands to 1000 m in the inland areas; local ice caps and valley glaciers are common in the region, although the mean annual precipitation is only about 200 mm per year. Most of the sea in the area is covered by permanent sea ice, with pack ice further east, but open water is present in late summer in some fjords north of Nioghalvfjerdsfjorden, and in the Nordøstvandet polynia.


2015 ◽  
Author(s):  
Mohammed Islam ◽  
Fatima Jahra ◽  
Michael Doucet

Mesh and domain optimization strategies for a RANS solver to accurately estimate the open water propulsive characteristics of fixed pitch propellers are proposed based on examining the effect of different mesh and computation domain parameters. The optimized mesh and domain size parameters were selected using Design of Experiments (DoE) methods enabling simulations to be carried out in a limited memory environment, and in a timely manner; without compromising the accuracy of results. A Reynolds-Averaged Navier Stokes solver is used to predict the propulsive performance of a fixed pitch propeller. The predicted thrust and torque for the propeller were compared to the corresponding measurements. A total of six meshing parameters were selected that could affect the computational results of propeller open water performance. A two-level fractional factorial design was used to screen out parameters that do not significantly contribute to explaining the dependent parameters: namely simulation time, propeller thrust and propeller torque. A total of 32 simulations were carried out only to find out that the selected six meshing parameters were significant in defining the response parameters. Optimum values of each of the input parameters were obtained for the DOE technique and additional simulations were run with those parameters. The simulation results were validated using open water experimental results of the same propeller. It was found that with the optimized meshing arrangement, the propeller opens simulation time was reduced by at least a factor of 6 as compared to the generally popular meshing arrangement. Also, the accuracy of propulsive characteristics was improved by up to 50% as compared to published simulation results. The methodologies presented in this paper can be similarly applied to other simulations such as calm water ship resistance, ship propulsion to systematically derive the optimized meshing arrangement for simulations with minimal simulation time and maximum accuracy. This investigation was carried out using STAR-CCM+, a commercial CFD package; however the findings can be applied to any RANS solver.


Author(s):  
Jens-Holger Hellmann ◽  
Karl-Heinz Rupp ◽  
Walter L. Kuehnlein

According to the present Finnish-Swedish Ice Class Rules (FSICR) the formulas for the required main engine power for tankers led to much bigger main engines than it is needed for the demanded open water speed. Therefore model tests may be performed in order to verify the vessel’s capability to sail with less required power in brash ice channels compared to the calculations. Several model test runs have been performed in order to study the performance of crude oil tankers sailing in brash ice. The tests were performed as towed propulsion tests and the brash ice channel was prepared according to the guidelines set up by the Finnish Maritime Administration (FMA). The channel width was 2 times the beam of the tanker. The model tests were carried out at a speed of 5 knots. For the tests a parental level ice sheet of adequate thickness is prepared according to HSVA’s standard model ice preparation procedure. After a predefined level ice thickness has been reached, the air temperature in the ice tank will be raised. An ice channel with straight edges will be cut into the ice sheet by means of two ice knives. The ice stripe between the two cuts will be manually broken up into relatively small ice pieces using a special ice chisel and if required the brash ice material will be compacted. Typically the brash ice thickness will be measured prior the tests at 9 positions across the channel and every two meter over the entire length of the brash ice channel with a special device, which consists of a measuring rule with a perforated plate mounted under a right angle at the lower end of the rule. As a result of the tests it could be demonstrated that tankers with a capacity of more than 50 000 tons require 50% and even less power compared to calculations using the present FSICR formulas.


1964 ◽  
Vol 17 (4) ◽  
pp. 364-375
Author(s):  
R. E. G. Simmons

The shortest route from the Great Lakes and St. Lawrence River to Europe passes through the Strait of Belle Isle. The alternative routes pass through the Cabot Strait and are between 100 and 400 miles longer according to the European port of destination. The Strait of Belle Isle is, however, normally closed to navigation from the end of December until the middle of July due to the presence of pack ice and icebergs.Air reconnaissance patrols flown over the Labrador, Belle Isle and East Newfoundland areas seem to indicate that, for the past few years at least, ice conditions have not been so severe as to hamper navigation throughout the normal period of closure. Consolidated ice is only present from the third week of January to mid-February and clears in mid-April to mid-May; only icebergs present a problem in May and June. It is hoped t o show that with proper air reconnaisance at the beginning and end of the ice season, navigation through the Strait could be extended to eight or nine months of the year, or even longer, instead of the present short season of only 5½ months.


1987 ◽  
Vol 33 (115) ◽  
pp. 330-340 ◽  
Author(s):  
Steven A Arcone ◽  
Allan J Delaney

AbstractThe ice-thickness profiling performance of a helicopter-mounted short-pulse radar operating at approximate center frequencies of 600 and 900 MHz was assessed. The antenna packages were mounted 1.2 m off the skid of a small helicopter whose speed and altitude were varied from about 1.8 to 9 m/s and 3 to 12 m. Clutter from the helicopter offered minimal interference with the ice data. Data were acquired in Alaska over lakes (as a proving exercise) and two rivers, whose conditions varied from open water to over 1.5 m of solid ice with numerous frazil-ice formations. The most readily interpretable data were acquired when the ice or snow surface was smooth. Detailed surface investigations on the Tanana River revealed good correlations of echo delay with solid ice depth, but an insensitivity to frazil-ice depth due to its high water content. On the Yukon River, coinciding temporally coherent surface and bottom reflections were associated with solid ice and smooth surfaces. All cases of incoherent surface returns (scatter) occurred over ice rubble. Rough-surface scattering was always followed by the appearance of bottom scattering but, in many cases, including a hanging-wall formation of solid frazil ice, bottom scattering occurred beneath coherent, smooth-surface reflections. Areas of incoherent bottom scattering investigated by drilling revealed highly variable ice conditions, including frazil ice. The minimum ice thickness that could be resolved from the raw data was about 0.2 m with the 600 MHz antenna and less than 0.15 m with the 900 MHz antenna.


Sign in / Sign up

Export Citation Format

Share Document