A Method for Structural Design of Pontoon Type VLFS Based on Collapse Behavior and Reliability Analysis

Author(s):  
Hiroo Okada ◽  
Koji Masaoka ◽  
Takashi Tsubogo ◽  
Shinji Katsura ◽  
Shin-Ichi Kawamata

This paper deals with a simplified method for the preliminary design of pontoon-type very large floating structures (VLFS), which are supposed floating airport, based on collapse behavior and reliability analysis in irregular waves. Firstly, a simplified estimation method is presented for the probabilistic load effect model of VLFS under irregular sea-state conditions. Next, limit state conditions are shortly presented for the buckling and ultimate collapse strength of stiffened plates under combined compression, shear and lateral pressure in the deck, bulkhead and bottom parts of VLFS, especially, by using a simplified estimation formula. Then, the validity is shown by non-linear finite element method. Finally, dominant limit state modes of 5,000m-class VLFS under combined loads with bending moment, shear force and lateral pressure are obtained by applying the above methods. Then, the features of the collapse behavior and reliability level are investigated by using above calculation results. Effects of design parameters such as yield stress, plate thickness, stiffener and bulkhead space are also investigated using sensitivity analysis.

Author(s):  
Shinji Katsura ◽  
Hiroo Okada ◽  
Koji Masaoka ◽  
Takashi Tsubogo

This paper deals with the limit state and reliability analysis of huge barge structures (HBS) which are supposed floating refuse storage and incineration plant based on collapsing behavior analysis in irregular waves as a part of studies on structural reliability-based design methods. First, a limit state and reliability analysis method is shortly presented for the buckling and ultimate collapse strength of deck, bulkhead and bottom panels of HBS. Next, a simplified method is briefly introduced for collapsing behavior and reliability analysis of HBS under extreme sea loads by using a developed system combined with a finite element method and plastic node method using hexahedral element models. Moreover, a simplified estimation method is shortly introduced for the probabilistic load model considering the hydro-elastic response of the structure in irregular waves. Finally, dominant limit state modes of 1,000m-class HBS under combined loads with bending moment, shearing force and lateral pressure are obtained by applying the above methods. Then, the features of the collapsing behavior and reliability level are investigated by using above calculation results. Effects of statistical values such as reduction of thickness due to corrosion, yield stress and design parameters are also investigated using sensitivity analysis.


1997 ◽  
Vol 41 (04) ◽  
pp. 301-317
Author(s):  
Jeom K. Paik ◽  
Anil K. Thayamballi ◽  
Min S. Chun

The objectives of the present study are to obtain experimental data on collapse strength of steel corrugated bulkhead models and also to develop a simple analytical formulation for ultimate strength useful in the design of corrugated bulkheads under static lateral pressure. Collapse tests on nine mild steel corrugated bulkhead models having five bays of corrugations are carried out, varying the corrugation angle, the plate thickness and the type of loading (axial compression and/or lateral pressure). Using the test data, the characteristics of the collapse mechanism for corrugated bulkheads are investigated. For purposes of rapid first cut estimates of strength, a new and simple analytical formulation for predicting the ultimate strength of corrugated bulkheads under hydrostatic pressure is derived based on an assumed stress distribution over the corrugation cross section at the ultimate limit state. The modeling error associated with the new formulation is established by comparing its predictions with the experimental results. The development of ultimate strength based design guidelines and the effect of design parameters such as the corrugation angle on ultimate strength of a corrugated bulkhead are then discussed. All experimental information and strength data are tabulated, which is a benefit in itself.


Author(s):  
Shinji Katsura ◽  
Hiroo Okada ◽  
Koji Masaoka ◽  
Takashi Tsubogo ◽  
Kiko Shimada

This paper deals with the elastic response behavior of marine tunnel structures with tension legs in regular and irregular waves. Firstly, a simplified estimation method for dynamic responses under regular wave conditions is analytically presemed using a simple beam on an elastic foundation. Then, in order to demonstrate the validity of above results, experimental studies are carried out for a marine tunnel structure model with tension legs under wave-induced loads. Next, a simplified estimation method is presented for the elastic response behavior under irregular wave conditions by using above analytical results and combining irregular sea wave spectra. Then, the limit state failure mode of the main structure is presented for estimating the reliability level for cracking failure under extreme wave loads. Finally, the applicability of the methods is investigated through numerical examples carried out for a 1,000m-class marine tunnel structure with tension legs under some irregular sea state conditions. And characteristics of the short-term responses and reliability levels for the cracking failure are numerically shown.


Author(s):  
Tomoki Takami ◽  
Yusuke Komoriyama ◽  
Takahiro Ando ◽  
Kazuhiro Iijima

Abstract This paper describes a series of towing tank tests using a scaled model of a recent container ship for validating the First Order Reliability Method (FORM) based approach to predict the maximum response. The FORM based approach is adopted in conjunction with the nonlinear strip method as an estimation method for the most probable wave episodes (MPWEs) leading to the given extreme wave-induced vertical bending moments (VBMs). Tank tests under the pre-determined MPWEs are conducted to evaluate the extreme wave-induced VBMs. Numerical simulations based on the coupled Computational Fluid Dynamics (CFD) and Finite Element Analysis (FEA) are also conducted and are compared with the test results under the MPWEs. Furthermore, to estimate the extreme VBM statistics, tank tests under random irregular waves are conducted. A series of validations of the probability of exceedances (PoEs) of the VBM evaluated from the FORM based approach is carried out. The effect of hydroelastic (whipping) vibrations on the extreme VBM statistics are finally discussed.


2011 ◽  
Vol 147 ◽  
pp. 197-202 ◽  
Author(s):  
Jiang Zhou ◽  
Jing Cao ◽  
Yu He ◽  
Jie Song

Lacking of explicit limit state function (LSF) will result large quantities of computational efforts for a FEAM based structural reliability analysis. An improved response surface (RS) method is proposed to analyze the failure probability of foundation pit through combining uniform design (UD) and non-parametric regression (NPR). Deferent levels of design parameters are first delicately selected according to UD and then FEAM is used to analysis corresponding pit response parameters including maximum lateral displacement of wall, settlement of ground, safety factor of overall stability, safety factors of against overturning, heave and piping. The RS relationship is then established through NPR based on inputs and responses. At last, a direct Mont Carlo Simulation is carried out to obtain the probability density function of response parameters.


Author(s):  
Singiresu S. Rao ◽  
Yang Zhou

Abstract The performance of a mechanical or structural system can be improved through a proper selection of its design parameters such as the geometric dimensions, external actions (loads) and material characteristics. The computation of the reliability of a system, in general, requires a knowledge of the probability distributions of the parameters of the system. It is known that for most practical systems, the exact probability distributions of the parameters are not known. However, the first few moments of the parameters of the system may be readily available in many cases from experimental data. The determination of the reliability and the sensitivity of reliability to variations or fluctuations in the parameters of the system starts with the establishment of a suitable limit state equation. This work presents a reliability analysis approach for mechanical and structural systems using the fourth order moment function for approximating the first four moments of the limit state function. By combining the fourth-order moment function with the probabilistic perturbation method, numerical methods are developed for finding the reliability and sensitivity of reliability of the system. An automobile brake and a power screw are considered for demonstrating the methodology and effectiveness of the proposed computational approach. The results of the automobile brake are compared with those given by the Monte Carlo method.


1992 ◽  
Vol 114 (2) ◽  
pp. 129-136 ◽  
Author(s):  
C. O¨stergaard

International design codes for seagoing steel ships of today are in the process of testing a new safety format with load factors separately multiplied with nominal (code) values of still water and wave loads. This leads to two design values of these loads, the sum of which must not exceed a design value of the strength of the ship structure, which is again a nominal (code) value of strength, this time divided by a strength factor. Such load and strength factors are generally termed partial safety factors. In the paper, vertical still water and wave bending moments of containerships are considered as loads. The partial safety factors are determined on the basis of reliability analysis, i.e., the sum of the design values of the loads will not exceed a design serviceability limit state of the ship’s structure with given probability. To enable reliability analysis, distribution density of the ship’s strength to resist bending moments is based on a stochastic interpretation of nominal (code) values used in the conventional safety format. The probability density of the still water bending moment is obtained from recently published statistical data. The probability density of the wave bending moment is calculated using advanced hydrodynamic and spectral analysis, including long-term statistics of the (North Atlantic) seaway. Reliability and related design values are estimated using the FORM algorithm with due consideration of the different repetition numbers for which the stochastic models of the two bending moments are valid. The results are presented as nonlinear regression formulas and as diagrams that specify partial safety factors related to length and beam of containerships. The nominal values of bending moments to be used with these partial safety factors are given as functions of length, beam, and block coefficient of those ships.


2001 ◽  
Vol 38 (01) ◽  
pp. 9-25
Author(s):  
Jeom Kee Paik ◽  
Anil K. Thayamballi ◽  
Bong Ju Kim

The aim of the present study is to develop more advanced design formulations for the ultimate strength of ship plating than available at present. Plate ultimate strength subject to any combination of the following four load components—longitudinal compression/tension, transverse compression/tension, edge shear, and lateral pressure loads—is addressed. The developed formulations are designed to be more sophisticated than existing theoretically based simplified methods. The influence of post-weld initial imperfections in the form of initial deflections and residual stresses is taken into account. It has been previously recognized that a single ultimate strength interaction equation cannot successfully represent the ultimate limit state of long and/or wide plating under all possible combinations of load components involved. This is due to the fact that the collapse behavior of the long and/or wide plating depends primarily on the predominant load components, implying that more than one strength interaction formulations may be needed to more properly predict the plate ultimate limit state. In this regard, the present study derives three sets of ultimate strength formulations for the long and/or wide plating under the corresponding primary load by treating lateral pressure as a secondary dead load. The ultimate strength interaction formula under all of the load components involved is then derived by a relevant combination of the individual strength formulas. The validity of the proposed ultimate strength equations is studied by comparison with nonlinear finite-element analyses and other numerically based solutions.


2021 ◽  
Vol 881 ◽  
pp. 131-135
Author(s):  
Meng Xi Tan ◽  
Yang Li

Based on the Monte Carlo method, the functional function under the normal use limit state given by the specification introduces the concrete tensile strength of each temperature gradient under ultra-low temperature, and the coefficient of change of concrete elastic modulus. By changing the temperature of the member, the thickness of the protective layer, the bending moment effect ratio, the reinforcement size,the concrete grade and the length of the bending beam. Analyze the reliable index of the deflection control of the flexural member under ultra-low temperature to obtain: When the reinforced concrete flexural member is reduced from normal temperature 20°C to-160°C, the reliable deflection index of the component increases non-linearly, reaches the maximum value at-130°C, and then decreases slightly, the concrete strength grade and the thickness of the protective layer under each temperature gradients have the greatest influence on the deflection control of the bending beam under ultra-low temperature, followed by beam length, steel bar size, load effect ratio,which is different from normal temperature.


Author(s):  
Branka Bužančić Primorac ◽  
Joško Parunov ◽  
C. Guedes Soares

AbstractClassical structural reliability analysis of intact ship hulls is extended to the case of ships with collision or grounding damages. Still water load distribution and residual bending moment capacity are included as random variables in the limit state equation. The probability density functions of these random variables are defined based on random damage parameters given by the Marine Environment Protection Committee of the International Maritime Organization, while the proposed reliability formulation is consistent with international recommendations and thus may be valuable in the development of rules for accidental limit states. The methodology is applied on an example of an Aframax oil tanker. The proposed approach captures in a rational way complex interaction of different pertinent variables influencing safety of damaged ship structure.


Sign in / Sign up

Export Citation Format

Share Document