Bio-Optical Sensors Onboard Autonomous Profiling Floats

Author(s):  
Oliver Zielinski ◽  
Barbara Cembella ◽  
Ru¨diger Heuermann

The perspective of an array of thousands of floats drifting in the world ocean offers the possibility to monitor global ocean currents via the distribution of oceanographic parameters like temperature and salinity (WOCE – ARGO programme). Deploying these floats with advanced bio-optical sensors for the detection of bio-geochemical parameters offers a potential for large scale assessment of the pelagic primary productivity and the bio-geochemical processes involved. Technical specifications to be met by these sensors will be: low power consumption, long-term stability and reliability, standardized interfaces and protocols together with an intelligent data handling. However, these requirements also demand sophisticated capabilities of the float as a platform. Enhanced interfaces, algorithmic power and memory including new telemetry and docking solutions are necessary to provide a flexible and yet reliable platform for bio-geochemical sensors onboard floats. Within this work an overview of bio-optical sensors, which were integrated in autonomous profiling systems, will be given. This introduction will be followed by first results from hyperspectral irradiance and radiance data from the Navigating European Marine Observer (NEMO) float which were obtain during a two-day lake experiment. Finally, future integrations of sensors and general requirements for floating profiling drifter in the context of coastal and open ocean observatories will be discussed.

2021 ◽  
Vol 8 ◽  
Author(s):  
Hervé Claustre ◽  
Louis Legendre ◽  
Philip W. Boyd ◽  
Marina Levy

A recent paradigm explains that the downward pumping of biogenic carbon in the ocean is performed by the combined action of six different biological carbon pumps (BCPs): the biological gravitational pump, the physically driven pumps (Mixed Layer Pump, Eddy Subduction Pump and Large-scale Subduction Pump), and the animal-driven pumps (diurnal and seasonal vertical migrations of zooplankton and larger animals). Here, we propose a research community approach to implement the new paradigm through the integrated study of these BCPs in the World Ocean. The framework to investigate the BCPs combines measurements from different observational platforms, i.e., oceanographic ships, satellites, moorings, and robots (gliders, floats, and robotic surface vehicles such as wavegliders and saildrones). We describe the following aspects of the proposed research framework: variables and processes to be measured in both the euphotic and twilight zones for the different BCPs; spatial and temporal scales of occurrence of the various BCPs; selection of key regions for integrated studies of the BCPs; multi-platform observational strategies; and upscaling of results from regional observations to the global ocean using deterministic models combined with data assimilation and machine learning to make the most of the wealth of unique measurements. The proposed approach has the potential not only to bring together a large multidisciplinary community of researchers, but also to usher the community toward a new era of discoveries in ocean sciences.


2022 ◽  
Vol 8 ◽  
Author(s):  
Sophie Clayton ◽  
Harriet Alexander ◽  
Jason R. Graff ◽  
Nicole J. Poulton ◽  
Luke R. Thompson ◽  
...  

In this article, we present Bio-GO-SHIP, a new ocean observing program that will incorporate sustained and consistent global biological ocean observations into the Global Ocean Ship-based Hydrographic Investigations Program (GO-SHIP). The goal of Bio-GO-SHIP is to produce systematic and consistent biological observations during global ocean repeat hydrographic surveys, with a particular focus on the planktonic ecosystem. Ocean plankton are an essential component of the earth climate system, form the base of the oceanic food web and thereby play an important role in influencing food security and contributing to the Blue Economy. Despite its importance, ocean biology is largely under-sampled in time and space compared to physical and chemical properties. This lack of information hampers our ability to understand the role of plankton in regulating biogeochemical processes and fueling higher trophic levels, now and in future ocean conditions. Traditionally, many of the methods used to quantify biological and ecosystem essential ocean variables (EOVs), measures that provide valuable information on the ecosystem, have been expensive and labor- and time-intensive, limiting their large-scale deployment. In the last two decades, new technologies have been developed and matured, making it possible to greatly expand our biological ocean observing capacity. These technologies, including cell imaging, bio-optical sensors and 'omic tools, can be combined to provide overlapping measurements of key biological and ecosystem EOVs. New developments in data management and open sharing can facilitate meaningful synthesis and integration with concurrent physical and chemical data. Here we outline how Bio-GO-SHIP leverages these technological advances to greatly expand our knowledge and understanding of the constituents and function of the global ocean plankton ecosystem.


2020 ◽  
Author(s):  
Thierry Penduff ◽  
Fei-Er Yan ◽  
Imane Benabicha ◽  
Jean-Marc Molines ◽  
Bernard Barnier

<p>The OCCIPUT eddy-permitting (1/4°) global ocean/sea-ice 50-member ensemble simulation is analyzed over the period 1980-2015 to identify how the atmosphere and the intrinsic/chaotic ocean variability modulate the basin-scale Ocean Heat Content (OHC) at various timescales. In all regions of the simulated world ocean, the atmospherically-forced interannual OHC variability is driven by both air-sea heat fluxes (Qnet) and advective heat transport convergences (Conv), while the intrinsic component is driven by Conv, and damped by Qnet. </p><p>We focus on the Atlantic sector of the Southern Ocean (SA), where the oceanic “chaos” explains 36 to 90% of the interannual and decadal heat transport variability across the limits of the basin, and 22% of this huge basin’s OHC variability at interannual and decadal timescales.</p><p>The model also simulates the Antarctic Circumpolar Wave (ACW) that was observed in the 80-90’s, with large impacts on OHC and heat transports in the Southern Ocean. This forced signal appears south of Australia, propagates eastward around Antarctica and northward into the Tropical Atlantic and the Tropical Indian Ocean. </p><p>These results highlight the substantial contribution of large-scale low-frequency chaotic heat advection in eddy-active regions, and its major impact on decadal OHC variations over key basins. They suggest that climate simulations using eddying ocean models include an oceanic and random source of large-scale low-frequency variability whose atmospheric impacts remain to be assessed.</p>


2019 ◽  
Vol 59 ◽  
pp. 3.1-3.46 ◽  
Author(s):  
Russ E. Davis ◽  
Lynne D. Talley ◽  
Dean Roemmich ◽  
W. Brechner Owens ◽  
Daniel L. Rudnick ◽  
...  

Abstract The history of over 100 years of observing the ocean is reviewed. The evolution of particular classes of ocean measurements (e.g., shipboard hydrography, moorings, and drifting floats) are summarized along with some of the discoveries and dynamical understanding they made possible. By the 1970s, isolated and “expedition” observational approaches were evolving into experimental campaigns that covered large ocean areas and addressed multiscale phenomena using diverse instrumental suites and associated modeling and analysis teams. The Mid-Ocean Dynamics Experiment (MODE) addressed mesoscale “eddies” and their interaction with larger-scale currents using new ocean modeling and experiment design techniques and a suite of developing observational methods. Following MODE, new instrument networks were established to study processes that dominated ocean behavior in different regions. The Tropical Ocean Global Atmosphere program gathered multiyear time series in the tropical Pacific to understand, and eventually predict, evolution of coupled ocean–atmosphere phenomena like El Niño–Southern Oscillation (ENSO). The World Ocean Circulation Experiment (WOCE) sought to quantify ocean transport throughout the global ocean using temperature, salinity, and other tracer measurements along with fewer direct velocity measurements with floats and moorings. Western and eastern boundary currents attracted comprehensive measurements, and various coastal regions, each with its unique scientific and societally important phenomena, became home to regional observing systems. Today, the trend toward networked observing arrays of many instrument types continues to be a productive way to understand and predict large-scale ocean phenomena.


2013 ◽  
Author(s):  
Laura S. Hamilton ◽  
Stephen P. Klein ◽  
William Lorie

1996 ◽  
pp. 4-15
Author(s):  
S. Golovaschenko ◽  
Petro Kosuha

The report is based on the first results of the study "The History of the Evangelical Christians-Baptists in Ukraine", carried out in 1994-1996 by the joint efforts of the Department of Religious Studies at the Institute of Philosophy of the National Academy of Sciences of Ukraine and the Odessa Theological Seminary of Evangelical Christian Baptists. A large-scale description and research of archival sources on the history of evangelical movements in our country gave the first experience of fruitful cooperation between secular and church researchers.


Author(s):  
Christina Schindler ◽  
Hannah Baumann ◽  
Andreas Blum ◽  
Dietrich Böse ◽  
Hans-Peter Buchstaller ◽  
...  

Here we present an evaluation of the binding affinity prediction accuracy of the free energy calculation method FEP+ on internal active drug discovery projects and on a large new public benchmark set.<br>


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 495d-495
Author(s):  
J. Farias-Larios ◽  
A. Michel-Rosales

In Western Mexico, melon production depends on high-input systems to maximize yield and product quality. Tillage, plasticulture, fumigation with methyl bromide, and fertigation, are the principal management practices in these systems. However, at present several problems has been found: pests as sweetpotato whitefly (Bemisia tabaci Gennadius), aphids (Myzus and Aphis), leafminer (Liryomiza sativae); diseases as Fusarium, Verticilium, and Pseudoperenospora, and weeds demand high pesticide utilization and labor. There is a growing demand for alternative cultural practices, with an emphasis on reducing off-farm input labor and chemicals. Our research is based on use of organic mulches, such as: rice straw, mature maize leaves, banana leaves, sugarcane bagasse, coconut leaves, and living mulches with annual legume cover crop in melons with crop rotation, such as: Canavalia, Stilozobium, Crotalaria, and Clitoria species. Also, inoculations with mycorrhizal arbuscular fungi for honeydew and cantaloupe melon seedlings production are been assayed in greenhouse conditions for a transplant system. The use of life barriers with sorghum, marigold, and other aromatic native plants in conjunction with a colored yellow systems traps for monitoring pests is being studied as well. While that the pest control is based in commercial formulations of Beauveria bassiana for biological control. The first results of this research show that the Glomus intraradices, G. fasciculatum, G. etunicatum, and G. mosseae reached 38.5%, 33.5%, 27.0%, and 31.0% of root infection levels, respectively. Honeydew melons production with rice and corn straw mulches shows an beneficial effect with 113.30 and 111.20 kg/plot of 10 m2 compared with bare soil with 100.20 kg. The proposed system likely also lowers production cost and is applicable to small- and large-scale melon production.


1994 ◽  
Vol 29 (12) ◽  
pp. 279-282 ◽  
Author(s):  
C. Güldner ◽  
W. Hegemann ◽  
N. Peschen ◽  
K. Sölter

The integration of the chemical precipitation unit which would inject a lime solution into a series of mechanical-biological processes, including nitrification/denitrification, and the sludge treatment are the subject of this project. The essential target is the large-scale reconstruction of a mechanical-biological sewage treatment plant with insufficient cleaning performance in the new German states and the adjustment of the precipitation stage to the unsteady inflow of sewage. First results indicate that the pre-treatment performance could be improved by ≅ 20% and the discharge of concentrations of COD, BOD, N and P could be reduced and homogenized. In addition, experiments on hydrolysis and acidifiability of the pre-treatment sludge have been carried out on a laboratory level with the object of making sources of carbon readily available for denitrification. In the course of the experiment, inhibition of fatty acid production by calcareous primary sludge could not be detected. The characteristics of the sludge, such as draining and thickening were considerably improved by the adding of lime.


Sign in / Sign up

Export Citation Format

Share Document