scholarly journals Bio-GO-SHIP: The Time Is Right to Establish Global Repeat Sections of Ocean Biology

2022 ◽  
Vol 8 ◽  
Author(s):  
Sophie Clayton ◽  
Harriet Alexander ◽  
Jason R. Graff ◽  
Nicole J. Poulton ◽  
Luke R. Thompson ◽  
...  

In this article, we present Bio-GO-SHIP, a new ocean observing program that will incorporate sustained and consistent global biological ocean observations into the Global Ocean Ship-based Hydrographic Investigations Program (GO-SHIP). The goal of Bio-GO-SHIP is to produce systematic and consistent biological observations during global ocean repeat hydrographic surveys, with a particular focus on the planktonic ecosystem. Ocean plankton are an essential component of the earth climate system, form the base of the oceanic food web and thereby play an important role in influencing food security and contributing to the Blue Economy. Despite its importance, ocean biology is largely under-sampled in time and space compared to physical and chemical properties. This lack of information hampers our ability to understand the role of plankton in regulating biogeochemical processes and fueling higher trophic levels, now and in future ocean conditions. Traditionally, many of the methods used to quantify biological and ecosystem essential ocean variables (EOVs), measures that provide valuable information on the ecosystem, have been expensive and labor- and time-intensive, limiting their large-scale deployment. In the last two decades, new technologies have been developed and matured, making it possible to greatly expand our biological ocean observing capacity. These technologies, including cell imaging, bio-optical sensors and 'omic tools, can be combined to provide overlapping measurements of key biological and ecosystem EOVs. New developments in data management and open sharing can facilitate meaningful synthesis and integration with concurrent physical and chemical data. Here we outline how Bio-GO-SHIP leverages these technological advances to greatly expand our knowledge and understanding of the constituents and function of the global ocean plankton ecosystem.

Diversity ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 234 ◽  
Author(s):  
Eric A. Griffin ◽  
Joshua G. Harrison ◽  
Melissa K. McCormick ◽  
Karin T. Burghardt ◽  
John D. Parker

Although decades of research have typically demonstrated a positive correlation between biodiversity of primary producers and associated trophic levels, the ecological drivers of this association are poorly understood. Recent evidence suggests that the plant microbiome, or the fungi and bacteria found on and inside plant hosts, may be cryptic yet important drivers of important processes, including primary production and trophic interactions. Here, using high-throughput sequencing, we characterized foliar fungal community diversity, composition, and function from 15 broadleaved tree species (N = 545) in a recently established, large-scale temperate tree diversity experiment using over 17,000 seedlings. Specifically, we tested whether increases in tree richness and phylogenetic diversity would increase fungal endophyte diversity (the “Diversity Begets Diversity” hypothesis), as well as alter community composition (the “Tree Diversity–Endophyte Community” hypothesis) and function (the “Tree Diversity–Endophyte Function” hypothesis) at different spatial scales. We demonstrated that increasing tree richness and phylogenetic diversity decreased fungal species and functional guild richness and diversity, including pathogens, saprotrophs, and parasites, within the first three years of a forest diversity experiment. These patterns were consistent at the neighborhood and tree plot scale. Our results suggest that fungal endophytes, unlike other trophic levels (e.g., herbivores as well as epiphytic bacteria), respond negatively to increasing plant diversity.


2019 ◽  
Vol 6 ◽  
Author(s):  
Tim Moltmann ◽  
Jon Turton ◽  
Huai-Min Zhang ◽  
Glenn Nolan ◽  
Carl Gouldman ◽  
...  

Author(s):  
Loredana Stabili ◽  
Roberto Schirosi ◽  
Angela Di Benedetto ◽  
Alessandro Merendino ◽  
Luciano Villanova ◽  
...  

Although mucus plays many different roles among marine invertebrates, relatively little is known about the link between biochemical structure and function. In the present study we focused on some physical and chemical properties of the polychaeteSabella spallanzanii's mucus such as viscosity, osmolarity, electrical conductivity, elemental composition, the protein and carbohydrate content, the total lipids and fatty acid composition, and polychlorinated biphenyls (PCBs) contamination. Moreover, an antimicrobial activity of the mucus was investigated. The water content ofS. spallanzaniimucus was 96.2±0.3%. By dry weight 26±1.2% was protein, 8±0.21% was carbohydrate and only 0.1% lipid, much of the remainder of the dry weight was inorganic (about 65.2%). The estimated PCBs content was <0.005 μg g−1. The mucus ofS. spallanzaniiexerted a natural lysozyme-like activity and producedin vitrothe growth inhibition ofVibrio anguillarum, Vibrio harveyi, Pseudomonas aeruginosaandCandida albicans.The findings from this study contribute to improve the limited knowledge available on the mucus composition in invertebrates and have implications for future investigations related to employment ofS. spallanzaniimucus as a source of compounds of pharmaceutical and marine technological interest.


2021 ◽  
Vol 8 ◽  
Author(s):  
Robyn M. Samuel ◽  
Raissa Meyer ◽  
Pier Luigi Buttigieg ◽  
Neil Davies ◽  
Nicholas W. Jeffery ◽  
...  

Biomolecular ocean observing and research is a rapidly evolving field that uses omics approaches to describe biodiversity at its foundational level, giving insight into the structure and function of marine ecosystems over time and space. It is an especially effective approach for investigating the marine microbiome. To mature marine microbiome research and operations within a global ocean biomolecular observing network (OBON) for the UN Decade of Ocean Science for Sustainable Development and beyond, research groups will need a system to effectively share, discover, and compare “omic” practices and protocols. While numerous informatic tools and standards exist, there is currently no global, publicly-supported platform specifically designed for sharing marine omics [or any omics] protocols across the entire value-chain from initiating a study to the publication and use of its results. Toward that goal, we propose the development of the Minimum Information for an Omic Protocol (MIOP), a community-developed guide of curated, standardized metadata tags and categories that will orient protocols in the value-chain for the facilitated, structured, and user-driven discovery of suitable protocol suites on the Ocean Best Practices System. Users can annotate their protocols with these tags, or use them as search criteria to find appropriate protocols. Implementing such a curated repository is an essential step toward establishing best practices. Sharing protocols and encouraging comparisons through this repository will be the first steps toward designing a decision tree to guide users to community endorsed best practices.


2020 ◽  
Vol 2(15)/2020 (2(15)/2020) ◽  
pp. 25-33
Author(s):  
Thornike Zelelashvili

In the wake of technological advances, cyber-attacks are becoming more dangerous, becoming a part of everyday life and an element of all conventional warfare. For Black Sea countries as well as the rest of the world, security is paramount. In discussing the issue, we must analyse the opportunities that the countries of the Black Sea basin have, first of all, the threats posed by Russia. This unpredictable state is carrying out the occupation of territories, military aggression, and large-scale cyber-attacks in this region, which is not a guarantee of peace and security. Russia is trying to influence almost the whole world and especially the Black Sea region – Ukraine, Bulgaria, Romania, Turkey, Georgia with large-scale cyber-hacking attacks and continuous disinformation fake news. Against the background of cyberattacks and misinformation propaganda, it is difficult to determine what kind of safe environment can be created in this region. This requires new research, recommendations, scientific papers, defence strategies. Cooperation with the EU and NATO needs to be strengthened. Following the Warsaw Summit, the Euro-Atlantic Alliance enacted Article 5 of the Washington Treaty, that is, the principle of ‘collective defence’ in terms of cyber warfare, cyber-attacks, and cyberterrorism. The topic discusses the cybersecurity issues and defence mechanisms of the countries of the Black Sea region, as well as the ongoing processes in the field of cybersecurity in this region. The paper discusses the threats and risks posed by Russia in the field of cybersecurity, as well as its impact on world politics.


Nanophotonics ◽  
2018 ◽  
Vol 7 (8) ◽  
pp. 1387-1422 ◽  
Author(s):  
Stefano L. Oscurato ◽  
Marcella Salvatore ◽  
Pasqualino Maddalena ◽  
Antonio Ambrosio

AbstractThe illumination of azobenzene molecules with UV/visible light efficiently converts the molecules between trans and cis isomerization states. Isomerization is accompanied by a large photo-induced molecular motion, which is able to significantly affect the physical and chemical properties of the materials in which they are incorporated. In some material systems, the nanoscopic structural movement of the isomerizing azobenzene molecules can be even propagated at macroscopic spatial scales. Reversible large-scale superficial photo-patterning and mechanical photo-actuation are efficiently achieved in azobenzene-containing glassy materials and liquid crystalline elastomers, respectively. This review covers several aspects related to the phenomenology and the applications of the light-driven macroscopic effects observed in these two classes of azomaterials, highlighting many of the possibilities they offer in different fields of science, like photonics, biology, surface engineering and robotics.


Author(s):  
Oliver Zielinski ◽  
Barbara Cembella ◽  
Ru¨diger Heuermann

The perspective of an array of thousands of floats drifting in the world ocean offers the possibility to monitor global ocean currents via the distribution of oceanographic parameters like temperature and salinity (WOCE – ARGO programme). Deploying these floats with advanced bio-optical sensors for the detection of bio-geochemical parameters offers a potential for large scale assessment of the pelagic primary productivity and the bio-geochemical processes involved. Technical specifications to be met by these sensors will be: low power consumption, long-term stability and reliability, standardized interfaces and protocols together with an intelligent data handling. However, these requirements also demand sophisticated capabilities of the float as a platform. Enhanced interfaces, algorithmic power and memory including new telemetry and docking solutions are necessary to provide a flexible and yet reliable platform for bio-geochemical sensors onboard floats. Within this work an overview of bio-optical sensors, which were integrated in autonomous profiling systems, will be given. This introduction will be followed by first results from hyperspectral irradiance and radiance data from the Navigating European Marine Observer (NEMO) float which were obtain during a two-day lake experiment. Finally, future integrations of sensors and general requirements for floating profiling drifter in the context of coastal and open ocean observatories will be discussed.


Energies ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 2197 ◽  
Author(s):  
Beata Jabłońska ◽  
Paweł Kiełbasa ◽  
Maroš Korenko ◽  
Tomasz Dróżdż

Waste incineration is one of the paths of implementation of the European Union’s strategy aimed at reducing the amount of waste deposited in landfills. Along with the development of methods for processing and recycling various wastes, new waste is generated. One example is waste from polyethylene terephthalate (PET) bottles washed during their recycling. In this paper, physical and chemical properties of such wastes are analyzed in terms of their use in the power industry. This research is part of the search for new sources and new technologies for energy production. The study has taken into account the energy properties of waste intended for combustion (calorific value, water content, chemical composition, volatile substances, combustible and non-flammable content). Thermogravimetric analysis of the material tested indicated that the waste is a good source of energy. It was found that the elemental composition (C, H, N, S, O) of the waste investigated is similar to that for biomass materials, and the calorific value of 13.2 MJ/kg qualifies the waste for combustion, provided that its initial moisture is reduced, for example, for co-combustion in the cement industry. Another possibility is mixing the waste with other kinds of waste to obtain a new fuel with more satisfactory parameters.


Chemosensors ◽  
2019 ◽  
Vol 7 (3) ◽  
pp. 33 ◽  
Author(s):  
Saylan ◽  
Erdem ◽  
Cihangir ◽  
Denizli

Human fecal contamination is a crucial threat that results in difficulties in access to clean water. Enterococcus faecalis is a bacteria which is utilized as an indicator in polluted water. Nevertheless, existing strategies face several challenges, including low affinity and the need for labelling, which limit their access to large scale applications. Herein, a label-free fingerprint of the surface proteins of waterborne bacteria on a sensor was demonstrated for real-time bacteria detection from aqueous and water samples. The kinetic performance of the sensor was evaluated and shown to have a range of detection that spanned five orders of magnitude, having a low detection limit (3.4 × 104 cfu/mL) and a high correlation coefficient (R2 = 0.9957). The sensor also designated a high selectivity while other competitor bacteria were employed. The capability for multiple usage and long shelf-life are superior to other modalities. This is an impressive surface modification method that uses the target itself as a recognition element, ensuring a broad range of variability to replicate others with different structure, size and physical and chemical properties.


2015 ◽  
Vol 39 (2) ◽  
pp. 475-489 ◽  
Author(s):  
Diêgo Faustolo Alves Bispo ◽  
Alexandre Christofaro Silva ◽  
Cristiano Christofaro ◽  
Max Leandro Naves Silva ◽  
Maurício Soares Barbosa ◽  
...  

Peatlands are soil environments that accumulate water and organic carbon and function as records of paleo-environmental changes. The variability in the composition of organic matter is reflected in their morphological, physical, and chemical properties. The aim of this study was to characterize these properties in peatlands from the headwaters of the Rio Araçuaí (Araçuaí River) in different stages of preservation. Two cores from peatlands with different vegetation types (moist grassland and semideciduous seasonal forest) from the Rio Preto [Preto River] headwaters (conservation area) and the Córrego Cachoeira dos Borges [Cachoeira dos Borges stream] (disturbed area) were sampled. Both are tributaries of the Rio Araçuaí. Samples were taken from layers of 15 cm, and morphological, physical, and chemical analyses were performed. The 14C age and δ13C values were determined in three samples from each core and the vertical growth and organic carbon accumulation rates were estimated. Dendrograms were constructed for each peatland by hierarchical clustering of similar layers with data from 34 parameters. The headwater peatlands of the Rio Araçuaí have a predominance of organic material in an advanced stage of decomposition and their soils are classified as Typic Haplosaprists. The organic matter in the Histosols of the peatlands of the headwaters of the Rio Araçuaí shows marked differences with respect to its morphological, physical, and chemical composition, as it is influenced by the type of vegetation that colonizes it. The peat from the headwaters of the Córrego Cachoeira dos Borges is in a more advanced stage of degradation than the peat from the Rio Preto, which highlights the urgent need for protection of these ecosystems/soil environments.


Sign in / Sign up

Export Citation Format

Share Document